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Challenges for next-generation networks
• Current status

– PHY layer innovations – significant capacity improvements
– Source coding innovations – proliferation of a variety of applications
– MAC, network and transport layers – often based on simplistic 

assumptions about users, ad-hoc rules, available information etc. 

• Key observations 
– Collaborative communication/networking - OK for sensor nets, but most 

applications lack incentives for collaboration
– Network and computing resources - shared among heterogeneous, 

intelligent users
– Strategic behaviors of users - try to maximize their own utilities (even if  

this impacts the performance of other users)
– Dynamic environment - not only channels/paths, but also source 

characteristics, application requirements, and ….
– Informational decentralization: information required for resource 

management is decentralized (info is private to the users)



Illustrative example –
Resource management in Current WLANs

• MAC protocol in IEEE 802.11a/b/g and e
– Distributed Coordination Function (DCF)
– Point Coordination Function (PCF)

• Underlying assumption for protocol design
– Users are not strategic

• Users have to follow protocol rules (e.g. CSMA/CA)
• Users have to declare their resource requirements truthfully (e.g. in polling-

based channel access – 802.11e HCF or 802.11a PCF)
• Users have to collaborate with each other

Problem 1: Violates individual rationality of users and there 
are no incentives for users to adhere to these rules
Problem 2: Rules can be easily violated by simply adjusting 
communication algorithms’ parameters, while still being 
protocol compliant; Often impossible to differentiate between 
users experiencing high traffic load/bad channel conditions, 
dumb users, and malicious users -> private information
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Existing resource management solutions 
assume non-strategic wireless users

Emphasis on fairness, not on incentives for truthful declaration
• Generalized Processor Sharing (GPS) [Gallager, 1993]
• Air-fair polling 
• Cross-layer resource allocation schemes

– Longest Queue receives Highest Possible Rate (LQHPR) [Yeh, 2003]
– Cross-layer resource allocation by exploiting the packet priority and 

channel diversity [Zakhor, 2002][Scaglione, vdSchaar, 2005]
– Utility-based resource allocation for multimedia applications [Girod 

2006][Park, vdSchaar, 2006][Su, vdSchaar, 2007]

Consequence: Tragedy of commons
• 802.11e Resource Allocation [vdSchaar, 2004, 2006] 
• CSMA/CA in 802.11 WLAN [Cagalj, 2005][Konorski, 2006] 
• R. W. Lucky, IEEE Spectrum, 2006
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What happens if users are strategic?

User 1: Foreman
User 2: Foreman 
User 3: Coastguard 
User 4: Coastguard 
User 5: Mobile

Channel: 
average SNR=23dB with variation 5dB

• CSMA/CA is vulnerable to selfish users using back-off 
attacks

• Selfish users gain significantly higher utility in IEEE 
802.11e HCF protocol 

Solutions?



Related research work (brief summary, not 
complete)

• Distributed power control [Cioffi][Poor][Pottie][Bambos] 
• Dynamic spectrum access [Honig][Berry][Jordan][Liu]
• Routing/networking games [Lazar][Low]
• Mechanism design for wired networks [Lazar][Johari][Parkes]
• Bargaining games [Liu][MacKenzie]
• Network utility maximization for collaborative and/or 

homogeneous users [Chiang][Srikant]
• Existence of equilibriums in communication games, i.e. 

descriptive rather than constructive [Goodman][Poor][Johari, 
Goldsmith][Liu]

• Equilibrium selection/design and methods for getting to that 
equilibrium are key [Lazar][Altman]



Limitations of existing works/
Issues considered in our research

• Information decentralization
– private information
– information history – depends on the user’s observations/protocols
– strategic message exchanges
– common knowledge – may differ

• Different types of non-collaborative behavior
– self-interested users
– malicious users
– dumb users (do not optimize their cross-layer strategies efficiently)

• Different strategies for playing the game
– foresighted vs. myopic users
– risk neutral, adverse 

• Dynamics 
– environment, but also other users (coupling between users) 

• Heterogeneity
– utility, experienced dynamics (traffic/loading, channels), complexity, 

(bounded) rationality
• Users can learn -> not single-agent, but multi-agent learning



Design space for next-generation networks

Currently /
Fairness – no consideration of   
resulting utility
Homogeneous users 
considered
No incentives to truthfully 
declare resource requirements/
rewards 
No jamming prevention

Rules

Desired ☺
Resource management policies
- should be adapted based on the   
available resources, participating 
users, social decisions
- should consider the environment     
dynamics and users’ heterogeneity–
actions, strategies, utilities



Design space for next-generation networks

Actions
- protocol compliant
- unique algorithms in various 
layers allow users’ differentiation
Strategies – for selecting actions
-depend on the available info
-foresighted/myopic
-malicious/altruistic
-risk-loving/risk-adverse

Actions & 
Strategies

Strategies – probability of selecting various actions
In non-collaborative network environments, users do not want to 
use pure strategies, but rather use mixed strategies!



Design space for next-generation networks

Available
information

Information (heterogeneous)
-information is private
-incomplete information about  other network entities 
(their actions, strategies, utilities, beliefs, etc.)
- common knowledge
-dynamic environment => time-varying information



Why knowledge-driven?
Knowledge acquisition involves complex cognitive processes: sensing, 
learning, communication, association and reasoning. [Wikipedia]

Information

Knowledge-driven
Decision Making

Wireless User

Central Spectrum 
Moderator (CSM) 
or 
Policy Maker

Actions

{Incomplete}

Negotiation messages
Resource Negotiation{Explicit/Implicit}

{Myopic, Foresighted, etc.}

Sensing
(existing techniques)

Learning
Rules

{Fairness/Efficiency}

Wireless Network 
(Spectrum Access

Market)

Next-generation network design
(NSF Career 2004)

• Model users as strategic agents playing a dynamic, stochastic game 
aimed at dividing network and/or computing resources 

• The game is played with incomplete information
• Users can learn their environment (source and channel characteristics, 

but also competing users!) based on the available information, their 
utilities and limited computational abilities ->
Foresighted (feedforward) rather than feedback adaptation



Creating dynamic resource markets/games

 

Mechanism
design

Coalition 
Theory

Bargaining 
Theory

Passive
Resource 
Allocation 

Current

Spectrum
Access
Rules:

Market-based resource management rules 
(centralized/distributed)

…

Future

Mechanism design [Fu, vdSchaar, 2006, 2007]
Coalition theory [Park, vdSchaar, 2007]
Bargaining [Park, vdSchaar, 2006]
Utility-driven resource allocation [Scaglione, vdSchaar, 2005][Chen, 
vdSchaar, 2006][Su, vdSchaar, 2007]



Criteria for design & construction of dynamic 
resource markets/games

• Resource types
• One-shot versus multi-stage games
• Stochastic vs. repeated games
• Centralized vs. decentralized (who enforces the rules?)
• Social decisions (fairness rules)
• Budget-balanced vs. money-making resource allocation
• Consider what information the users’ possess
• Selection/design of suitable equilibrium concepts
• Implementation 



Proposed generalized stochastic game 
[Fu, vd Schaar, 2006, 2007]

Formally, the generalized stochastic game is defined as a tuple ( , , , , , , , )wPI S A B RW sP , where  

I  is the set of agents (SUs), i.e. ={1,..., }MI ,  

S  is the set of state profiles of all SUs, i.e. 1= M× ×S S S  with iS  being the state set of SU i ,  

W  is the set of network resource states,  

A  is the joint external action space 1= M× ×A AA , with iA   being the external action set of  SU i ,  

B  is the joint internal action space 1= M× ×B B B , with iB   being the internal action set of SU i  to transmit

delay-sensitive data, 

sP  is a transition probability function defined as a mapping from the current state profile ∈s S , corresponding

joint external actions ∈ Aa  and internal actions ∈b B  and the next state profile ' ∈s S to a real number

between 0 and 1, i.e. : [0,1]× × ×S A B SP , 

wP  is a transition probability function defined as a mapping from the current resource state w ∈W  and the next

state w ′ ∈W  to a real number between 0 and 1, i.e. : [0,1]P ×W W .  

R  is a reward vector function defined as a mapping from the current state profile ∈s S and corresponding joint

external and internal actions ∈ Aa  and ∈b B  to an M -dimensional real vector with each element being the

reward to a particular agent, i.e. : M× ×R S A B . 



Centralized general stochastic game model 

Numerous networking/computing games:
- Networks: 802.11 nets – polling based, Cellular nets, Cognitive radio nets
- Computing systems: multi-tasks systems etc.

Retransmission limits, scheduling strategies, FEC etc.

Traffic specifications 
(like in e.g. 802.11a/e)

cognitive radio network 
with N channels:

[ ]1,...,t t t
Nw w=w



Evolution of multi-user interaction 
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Mechanism design
-Solutions: VCG, pricing mechanism, generalized auctions etc.
-Informational and complexity requirements
-Equilibrium selection: Nash, dominant etc.
-Incentives for truthful revelation

Mechanism design Mechanism design



• After each wireless user submits a bid vector                ,
and CSM performs two computations: 
(i) channel allocation and (ii) payment computation

• Social welfare (fairness):

• Taxation – assume second price auction
[Klemperer,1999][Sun, Modiano, Zheng, 2006]

Centralized general stochastic game –
moderator side (example)
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For one-shot games in wireless communication games (e.g. 
one-time resource allocation, like in 802.11e HCF), we proved 
that [F.Fu, vdSchaar, 2006]

– Optimal strategy is to adopt the best anticipated cross-layer strategy 
and reveal the “true” type (utility function)

– Optimal strategy is dominant ☺ , and thus, it can be chosen without 
knowing other users’ strategies

• Why is dominant strategy equilibrium desirable?
– No need to know other users’ actions/strategies  –> can use single 

agent learning

• For multi-stage games – everything gets more interesting ☺

Truthful revelation?



All users are transmitting Foreman video sequences.

Channel: average SNR=23dB with variation 5dB

Illustrative Results –
Impact of wireless users “smartness” (selected 
algorithms and cross-layer optimization)



How to play the stochastic game?
• History & observation

– History: 
– Observation :

• Policy

• Reward: 

• Discounted reward:

• Best response:
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Key challenge

• An SU may not exactly know the other SUs’ actions and models, 
and it cannot know their private information

• Thus, an SU can only predict the dynamics (uncertainties) caused by 
the competing SUs based on its observations from past interactions

For instance, in wireless networks:

Private information (e.g. characteristics of the application traffic, channel gain 
or channel conditions - SINR, etc.)

Network information (e.g. network resource states, primary users etc.)

Opponents information (e.g. states and possible actions of the opponents)

How to solve this problem? Multi-agent learning!



What information should be learnt?
* arg max ( , | , , )

i
i i i i i iQ s

π
π π − −= s wπ

To solve this optimization, the following information is required by SU i : 

1. the state transition model of SU i , ( )1 | , , ,t t t t
i i i i ip s s a b+

−a ; 

2. the state transition model of other SUs, ( )1 | , , , ,t t t t
j j j j jp s s a b j i+

− ∀ ≠a ; 

3. the state of other SUs, i−s ; 

4. the policy of other SUs, i−π ; 

5. the network resource state w . 



Multi-agent learning - definition
We define a learning algorithm iL  as: 

 ( ), , , ,
i i

t t t t t t t
i i i i wa b s B B Bπ

− −

⎡ ⎤ =⎢ ⎥⎣ ⎦ s π  

Output of the multi-user interaction game:  

 ( ), ,t t t tGame wΩ = s a  

Observation of SU i   

 ( ), ,t t t t
i i i io O s b= Ω , 

where O  is the observation function which depends on the current state, the current 
game output and the current internal action taken. 
Policy update:  

 ( )+1 , ,t t t t
i i i i io Iπ π −= F  

F  is the update function about the belief and policies 
t
iI−  is the exchanged information with the other SUs 

 
Beliefs about the other SUs’ states i−s , policies i−π  and the network resource state w :

( )+1 , ,
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w w w i iB B o I−= F , ( )+1 , ,
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Value of Learning [F.Fu,vdSchaar, 2007]

How much to learn for a desired performance (utility)?
[Y. Su, vdSchaar, 2008]
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where the reward t
iR depends on both the learning approach iL  and on the 

observation t
io  and information exchanged t

iI−  

For instance, given the same observation tio  and exchanged information t
iI− ,  

if the time average rewards of two algorithms i ′L  and i ′′L satisfy 
( )
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, then we say that learning algorithm i ′L  is  
better than i ′′L  



Multi-agent learning - illustration

iπ
t
io

t
is

t t
i ia ,b

i−I
Explicit information 
exchange

Solutions depend on the information availability:
- Reinforcement learning (no explicit modeling of other users)  
[Fu, vdSchaar, 2007]
- Fictitious Play (explicit modeling of other users – needs to    
know what actions opponents took, but not their strategies)
[Shiang, vdSchaar, 2007]



Illustrative results for bidding and learning 
strategies

• Fixed bidding strategy fixed
iπ : this strategy generates a constant bid vector during each stage of the auction

game, irrespective of the state that SU i  is currently in and of the states other SUs are in.  

•  Source-aware bidding strategy source
iπ : this strategy generates various bid vectors by considering the

dynamics in source characteristics (based on the current buffer state), but not the channel dynamics.  

• Myopic bidding strategy myopic
iπ : this strategy takes into account both the environmental disturbances and the

impact caused by other SUs. However, it does not consider the impact on its future rewards. 

• Bidding strategy based on best response learning i
iπ
L : This strategy is produced using the presented learning,

which considers both the environmental dynamics and the impact on the future reward.  

Information 
used for       
learning



Illustrative results

Performance of competing SUs with various bidding strategies 
SU 1 SU 2  Bidding 

Strategies Video Quality 
(PSNR) 

Average 
tax 

Average 
reward 

Video Quality 
(PSNR) 

Average 
tax 

Average 
reward 

Scenario 1 
1 2,fixed myopicπ π  25 dB 0.1222 2.6337 36 dB 0.5495 1.5105 

Scenario 2 1 2, myopicsourceπ π  26 dB 0.3147 2.4915 33 dB 0.6048 1.6116 
Scenario 3 

1 2,myopic myopicπ π  29 dB 0.4669 1.9767 30 dB 0.3763 1.7837 
Scenario 4 1

1 2, myopicπ πL  35 dB 0.6923 1.7428 27 dB 0.4197 2.2967 

 

Coastguard video sequence, 500 ms delay



Distributed stochastic games

Numerous networking/computing games:
- Networks: power control games, contention games etc.
- Computing systems: peer-to-peer, multi-tasks systems etc.

E.g. in power control games:
external action can be the selected power allocation, 
internal action can be the selected modulation and channel coding scheme



Distributed games - Illustrative results

Multi-user power control problem
Interference-limited multi-user communication systems
Frequency-selective channels
Transmit PSD design 

Goal
Maximize selfish users’ rates



Solution – Iterative waterfilling (W. Yu, J. Cioffi, 2002)

Nash equilibrium: competitive optimal

Convergence is achieved by iterative water-filling
/

Existing solutions

Can we do better? How?



A New Perspective on Multi-user Power Control
Games in Interference Channels [Y. Su, vdSchaar,2007]

Iterative Waterfilling =>Myopic users -> Nash equilibrium
Foresighted strategy in determining the transmit PSD -> 
Stackelberg equilibrium 

Bi-level programming formulation 
A low-complexity sub-optimal approach based on the 
necessary KKT conditions



Substantial performance improvements for both 
foresighted and myopic users  ! ☺
How to achieve this result using learning?

Illustrative results
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Preliminary results for different learning 
schemes in repeated power control games

Simulation results using different learning techniques 
Adopted 
schemes SU Reward 

(Kbit/joule) 
Average 
reward 

1 519.0 
2 195.2 
3 530.6 
4 2073.0 

Myopic 
scheme 

5 1132.9 

890.15 

1 555.2 
2 113.5 
3 345.6 
4 2830.2 

AR learning 
scheme 

5 1183.7 

1005.6 

1 529.3 
2 475.6 
3 476.8 
4 2831.2 

AA learning 
scheme 

5 1033.3 

1069.3 

 

Adaptive
Action Learning (AA)

Adaptive
Reinforcement (AR)

Stackelberg (perfect info.) Average Reward: 1250



Distributed and dynamic resource management 
with information exchanges [H. Shiang, vdSchaar, 2007]
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Dynamic Strategy Learning

Dynamic Strategy Learning

Frequency selection
based on strategy

Strategy Learning

Traffic specification exchange
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Foresighted adaptation and learning in 
computing games

Complexity-Adaptive
Multimedia Application
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[Foo, vdSchaar, 2006,2007,2008][Akyol, vdSchaar, 2006]
[vdSchaar, Andreopoulos, 2005]



Illustration of how the application decision policy takes 
actions based on the system-state model, 

and how these actions impact the actual system state

 

App. Decision Policy 
opt( )π= ∈ Aa s  

(Foresighted / Myopic) 

App. System-State Model ( , , )g ∈V Ss = l  

• Processor Utilization load∈ Sl  

• Cache Contents cache∈V S  

• Retirement Rate retireg ∈ S  

App. Action-Space A  

• Parameter Configuration paramA  

• Processor Selection procA  

• Scheduling schedA  

Actual System-State
• Processor Utilization 
• Cache Contents 
• Retirement Rate 

System-state feedback 
(Incomplete) 

ts

Run-time
app.-to-system 
mapping ta  

 

System-state model update 
based on action ta : ( , )

t
P ′a s s  

Available
actions 
A  

System-state changes in 
response to action ta . 



Our Goal

Add a new dimension to multi-user 
networks/systems by explicitly considering 
strategic users, dynamics, heterogeneity and 
information availability

• Opens opportunities for new theoretical foundations     
and algorithm designs, new metrics needed

• Significant performance improvements
• Backwards compatible with existing protocols
• Simple system designs for building next-generation 

dynamic, robust and trustable networks 
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