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Abstract— It has been shown by Zehavi that the performance
of coded modulation can be improved over a Rayleigh fading
channel by bit-wise interleaving at the encoder output, and by
using an appropriate soft-decision metric for a Viterbi decoder
at the receiver. Caire et al presented the details of the theory
behind bit-interleaved coded modulation (BICM).

In this paper we show that for Gray encoded M -ary quadra-
ture amplitude modulation (QAM) systems, the bit metrics of
BICM can be further simplified. In QAM systems, the maximum
likelihood (ML) detector for BICM uses the minimum distance
between the received symbol and M/2 constellation points on
the complex plane as soft-decision metrics. We show that soft-
decision bit metrics for the ML decoder can be further simplified
to the minimum distance between the received symbol and√

M/2 constellation points on the real line R
1. This reduces

the number of calculations needed for each bit metric sub-
stantially, and therefore reduces the complexity of the decoder
without compromising the performance. Simulation results for
single carrier modulation (SCM), and multi-carrier modulation
(MCM) systems over additive white Gaussian noise (AWGN) and
Rayleigh fading channels agree with our findings. In addition,
we tie this result to the decoding methods for bit interleaved
convolutional code standards used in industry.

I. INTRODUCTION

The increasing interest and importance of wireless com-
munications over the past couple of decades have led the
consideration of coded modulation [1] for fading channels.
It is known that, even for fading channels, the probability
of error can be decreased exponentially with average signal
to noise ratio using optimal diversity. Naturally, at first,
several approaches using Ungerboeck’s method of keeping
coding combined with modulation are applied over fading
channels, as summarized in [2]. These approaches considered
the performance of a trellis coded system that is based on a
symbol-by-symbol interleaver with a trellis code. The order
of diversity for any coded system with a symbol interleaver is
the minimum number of distinct symbols between codewords.
Thus, diversity can only be increased by preventing parallel
transitions and increasing the constraint length of the code.

In 1989 Viterbi et al [3] introduced a different approach.
They designed schemes to keep their basic engine an off-
the-shelf Viterbi decoder. This resulted in leaving the joint
decoder/demodulator for two joint entities.

Zehavi [4] later realized that the code diversity, and there-
fore the reliability of coded modulation over a Rayleigh
channel, could be improved. Using bit-wise interleaving and
an appropriate soft-decision bit metric at a Viterbi decoder,
Zehavi achieved to make the code diversity equal to the
smallest number of distinct bits, rather than channel symbols,
along any error event. This leads to a better coding gain over
a fading channel when compared to TCM, [4].

Following Zehavi’s paper, Caire et al [5] presented the the-
ory behind BICM. Their work illustrated tools to evaluate the
performance of BICM with tight error probability bounds, and
design guidelines. In Section II we present a brief overview
of BICM, and refer the reader to [5] for details.

In QAM systems, the ML detector for BICM uses the
minimum distance between the received symbol and M/2 con-
stellation points on the complex plane as soft-decision metrics.
In Section III, we show that soft-decision bit metrics for the
ML decoder can be further simplified to the minimum distance
between the received symbol and

√
M/2 constellation points

on the real line R
1. This reduces the number of calculations

needed for each bit metric substantially, and therefore reduces
the complexity of the decoder without compromising the
performance.

Another set of simplified bit metrics using the log likelihood
ratio for each bit are given in [6] for bit interleaved OFDM
systems with 16 and 64 QAM. In this paper we present a
different set of bit metrics by deriving the optimum bit metrics
from the theoretical findings of [5]. We show that the proposed
low complexity bit metrics are mathematically equivalent to
the theoretical ones in terms of decoding. Moreover, the low
complexity soft-decision bit metrics presented here can be
used for any M -ary QAM system with SCM or MCM. We also
tabulate the implementation advantages of the proposed low
complexity bit metrics compared to the original ones in terms
of the number of real multiplications, additions, subtractions,
and comparisons needed.

Simulation results supporting our findings for SCM and
MCM over AWGN and Rayleigh channels are presented in
Section IV. We finish our paper with a brief conclusion in
Section V, where we summarize our findings.
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II. BIT-INTERLEAVED CODED MODULATION (BICM)

BICM can be obtained by using a bit interleaver, π, be-
tween an encoder for a binary code C and an N -dimensional
memoryless modulator over a signal set χ ⊆ C

N of size
|χ| = M = 2m with a binary labeling map µ : {0, 1}m → χ.
During transmission, the code sequence c is interleaved by
π, and then mapped onto signal sequence x ∈ χ. The signal
sequence x is then transmitted over the channel.

Fig. 1. Block diagram of transmission with BICM

The bit interleaver can be modeled as π : k → (k′, i) where
k denotes the original ordering of the coded bits ck, k′ denotes
the time ordering of the signals xk′ transmitted, and i indicates
the position of the bit ck in the label of xk′ .

Let χi
b denote the subset of all signals x ∈ χ whose label

has the value b ∈ {0, 1} in position i. Then, the ML bit metrics
can be given by [5]

λi(yk′ , b) =




max
x∈χi

b

log pθk′ (yk′ |x), perfect CSI

max
x∈χi

b

log p(yk′ |x), no CSI
(1)

where θk′ denotes the channel state information (CSI) for the
time order k′.

The ML decoder at the receiver can make decisions accord-
ing to the rule

ĉ = arg max
c∈C

∑
k

λi(yk′ , ck). (2)

III. LOW COMPLEXITY BICM BIT METRICS FOR

M -ARY QAM

For M -ary QAM constellations χ ⊆ C. From this point
forward we denote bold symbols yk′ and x as yk′ and x which
are complex numbers.

One can show using the ML criterion [7] that maximizing
the probabilities in equation (1) is equal to minimizing the dis-
tance between the received symbol and the signal constellation
points,

λi(yk′ , b) = min
x∈χi

b

‖yk′ − x‖2 (3)

where ‖(·)‖2 denotes the Euclidean distance square of (·)
and yk′ is the output of an equalizer or the received signal
if channel is unknown. Then, the ML decision rule given in
(2) can be rewritten as

ĉ = arg min
c∈C

∑
k

λi(yk′ , ck)

= arg min
c∈C

∑
k

min
x∈χi

ck

‖yk′ − x‖2. (4)

This metric solves the difficult problem of the different
ordering of the bits before and after the interleaver at the trans-
mitter in decoding by associating a contribution to the metric
for each bit, associated with the channel symbol received while
that bit is transmitted. In other words, consecutive sections
of the trellis employ different channel symbols depending on
the interleaver, and the metric is different than that used in
conventional Viterbi decoding.

As mentioned in [5] Gray encoding is used for BICM, and
plays a key role in its performance. In terms of BICM notation
of this paper, we rephrase the definition of Gray encoding for
the reader’s convenience.

Definition: Gray Encoding: Let χ denote a signal set of
size M = 2m, with minimum Euclidean distance dmin. A
binary map µ : {0, 1}m → χ is a Gray encoding for χ if, for
all i = 1, . . . , m and b ∈ {0, 1}, each x ∈ χi

b has at most one
z ∈ χi

b̄
at distance dmin.

There are many different ways of Gray encoding an M -ary
QAM constellation. One way is to separate the m bits into
two, m/2 bits for the in-phase and m/2 bits for the quadrature
components of a symbol. Then encode the m/2 bits onto 2m/2

levels on the real line R
1 according to Gray encoding rule

for each in-phase and quadrature component. Combining in-
phase and quadrature components results in an M -ary QAM
constellation on the complex plane. Such an encoding is shown
in Figure 2 for a 16 QAM constellation1. The bars in Figure
2 (a) represent where the bit (b0 or b1) is one.
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Fig. 2. 16 QAM constellation with Gray encoding, (a) Encoding of two bits
into four levels (b) Two-Dimensional Constellation

In order to find the bit metrics given in equation (1) or
equivalently in equation (3), one has to have the subsets
χi

b; i = 0, 1, . . . ,m−1, b ∈ {0, 1} of the signal map χ. Figures
3 (a)-(h) show the subsets of the signal map of Figure 2 (b).
Decision regions for the constellation points in the subsets
are also shown. Note that, the decision regions of the subsets
for any M -ary QAM constellation can be found easily in the
same manner. Therefore, it is straightforward to generalize the
results to M -ary QAM case. As given in (3) and (4), for M -ary
QAM systems, each soft-decision bit metric of BICM is the
minimum distance square between yk′ and M/2 constellation
points of χi

ck
. The square distance on the complex plane in (3)

can be calculated by adding the square distances of in-phase
and quadrature components.

1All the QAM constellations presented here are normalized so that the
average energy of the signal constellation is one.
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Fig. 3. Subsets of normalized 16 QAM constellation with Gray encoding.
Decision regions for the constellation points are shown with dotted lines.
(a) χ0

0, (b) χ0
1, (c) χ1

0, (d) χ1
1, (e) χ2

0, (f) χ2
1, (g) χ3

0, (h) χ3
1

‖yk′ − x‖2 = |re(yk′) − re(x)|2 + |im(yk′) − im(x)|2
= d2

in(yk′ , x) + d2
q(yk′ , x) (5)

where re(·) and im(·) are the real and imaginary parts of
a complex number (·), and din(·) and dq(·) represents the
distance in in-phase and quadrature axes. So, the equation (4)
becomes,

ĉ = arg min
c∈C

∑
k

min
x∈χi

ck

[
d2

in(yk′ , x) + d2
q(yk′ , x)

]
. (6)

A Viterbi decoder at the receiver decodes the original bit
sequence ck ∈ {0, 1} through the trellis by calculating the bit
metrics using yk′ and ith bit location. One way to do this is
to generate the trellis with the original ordering of ck’s. It is
known at the receiver that the bit ck is in the symbol yk′ at the
ith bit location. Through the trellis, for each branch from one
stage to another, the bit metric for each ck can be calculated
with this knowledge and whether ck is zero or one on that
particular branch. Adding the bit metrics gives the branch
metric, and the Viterbi algorithm can be applied through the
trellis.

Let’s define xi
ck

as the constellation point where the metric
(3) is minimum ∀x ∈ χi

ck
, and assume that 0 ≤ i ≤ m/2− 1.

Then, it is easy to see from the decision regions in Figures 3
(a)-(d) that for a fixed i, the quadrature values of xi

ck=0 and
xi

ck=1 are the same2. This is due to the fact that for 0 ≤ i ≤
m/2− 1 subsets χi

0 and χi
1 covers all the constellation points

of χ in the quadrature axis over the given
√

M/2 points of
the in-phase axis. Hence, dq(yk′ , xi

ck
) is the same for ck = 0

and ck = 1. Therefore for i = 0, 1, . . . ,m/2− 1, dq(yk′ , xi
ck

)
has no effect on making a decision about ck in (6). Similarly,
for i = m/2, . . . , m − 1 din(yk′ , xi

ck
) is the same for ck = 0

and ck = 1 (see Figures 3 (e)-(h) for 16 QAM case), and
therefore has no effect on making a decision about ck in (6).
Consequently, the two-dimensional metric given in equation
(3) reduces to one-dimensional distance square.

2Note that this result can be easily generalized to any M -ary QAM
constellation

λi(yk′ , b) =




min
x̃∈χ̃ĩ

b

|re(yk′) − x̃|2, i = 0, 1, . . . ,m/2 − 1

min
x̃∈χ̃ĩ

b

|im(yk′) − x̃|2, i = m/2, . . . , m − 1

(7)
where

χ̃: set of constellation points on the real line R
1

χ̃ĩ
b: subset of χ̃ where the ĩth bit is equal to b ∈ {0, 1}
ĩ= 0, 1, . . . ,m/2 − 1

ĩ=

{
i, i = 0, 1, . . . ,m/2 − 1
i − m/2, i = m/2, . . . , m − 1

x̃: elements of χ̃
|(·)|: absolute value of real number (·)

Since ∀a, b ∈ R if |a|2 ≤ |b|2, then |a| ≤ |b| holds and (6)
is in summation form; one can, in addition, simplify the bit
metrics to one-dimensional distance,

λi(yk′ , b) =




min
x̃∈χ̃ĩ

b

|re(yk′) − x̃|, i = 0, 1, . . . ,m/2 − 1

min
x̃∈χ̃ĩ

b

|im(yk′) − x̃|, i = m/2, . . . ,m − 1 .

(8)
Figures 4 (a)-(d) shows the soft-decision bit metrics of equa-
tion (8). A minimum path Viterbi decoder can be used with the
soft-decision bit metrics of equation (8) to decode the original
bit sequence.
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Fig. 4. Bit metrics given in (8) (a) 16 QAM, ck = 0 (b) 16 QAM, ck = 1
(c) 64 QAM, ck = 0 (d) 64 QAM, ck = 1

As a result, soft-decision bit metrics of BICM are simplified
to the minimum distance between in-phase or quadrature
component of yk′ and

√
M/2 points of χ̃ĩ

ck
on the real

line R
1, instead of the minimum distance between yk′ and

M/2 points of χi
ck

on the complex plane. This reduces the
number of calculations needed for each soft-decision bit metric
substantially as tabulated in Table I.
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M -ary Multiplications Additions Subtractions Comparisons

4
16
64

256
1024

original low complexity
4 0
16 0
64 0

256 0
1024 0

original low complexity
2 0
8 0
32 0

128 0
512 0

original low complexity
4 1

16 2
64 4
256 8
1024 16

original low complexity
2 1
8 2

32 4
128 8
512 16

TABLE I

THE NUMBER OF REAL SUBTRACTIONS, MULTIPLICATIONS, ADDITIONS AND COMPARISONS NEEDED FOR EACH BIT METRIC USING THE ORIGINAL

BICM METRIC (3) AND THE LOW COMPLEXITY METRIC (8)

Several industry standards, for example IEEE 802.11a,
employ an encoder structure that is essentially equivalent
to the encoder of BICM: an industry standard convolutional
encoder followed by an interleaver. Typically standards leave
the decoding operation to vendors. One possibility in this
case is to employ hard decision decoding with its well-known
performance degradation from the optimum, typically more
than 2 dB. There are other techniques used in industry based
on individual bit metrics. Bit metrics for one such technique
are plotted in [8], as shown in Figure 5. Although one can
find intuitive explanations, these bit metric plots formally
correspond to the following definition.

• Define I ĩ
b as the union of intervals on the real line R

1

where the ĩth bit has the value b ∈ {0, 1} (the bars of
Figure 2 (a) represent I ĩ

1).
• Define y as re(yk′) for 0 ≤ i ≤ m/2− 1 and as im(yk′)

for m/2 ≤ i ≤ m − 1.
• For given ĩ, define I(y, ĩ) as the interval from the set of

intervals {I ĩ
b}b, b ∈ {0, 1} on the real line R

1 that the
real number y belongs to.

• Define Ic(y, ĩ) as the complement of I(y, ĩ) on the real
line. Ic(y, ĩ) = R

1 − I(y, ĩ).
• Then the bit metrics can be defined as the distance from

y to Ic(y, ĩ).
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Fig. 5. Bit metrics given in [8] (a) 16 QAM (b) 64 QAM

Note that the bit metrics given in [8] (Figure 5) can
be interpreted as approximations to the optimum BICM bit
metrics presented in this paper (equation (8) and Figure 4).

In a similar manner, we define another set of metrics that
can be used with BICM for M -ary QAM systems.

• Define x̃b(y, ĩ) ∈ χ̃ĩ
b, b ∈ {0, 1} as the closest constella-

tion point to the real number y.
• Define the distance dĩ

b(y) as dĩ
b(y) = |y − x̃b(y, ĩ)|.

• Define the bit metrics as dĩ
0(y)−dĩ

1(y), where y is either
re(yk′) or im(yk′) depending on i.

Figure 6 illustrates this set of soft-decision bit metrics. These
are again approximations to the metrics of (8) with the same
high performance as will be shown in the next section.
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Fig. 6. Bit metrics, difference of distances (a) 16 QAM (b) 64 QAM

The results presented here are valid for any scheme (SCM
or MCM) with QAM that deploys bit interleaving at the
transmitter over any type of communication channel. We
showed both mathematically and via simulations (see Section
IV) that the simplified soft-decision bit metrics of this paper
are equal to the original ones given in [5] in terms of decoding
the information bits. Therefore, with the new simplified bit
metrics, there is no performance degradation in the decoder
over AWGN or Rayleigh fading channels.

IV. SIMULATION RESULTS

We ran simulations for SCM and MCM systems. In both
cases, the channel is modeled either as AWGN or as Rayleigh
fading. Rayleigh channel is modeled as complex Gaussian
random variables with zero mean and variance one.

For both systems, we ran simulations using the bit metrics
given in equations (3), (7), (8), and in Figures 5 and 6. We
also ran simulations using a hard decision Viterbi decoder. In
hard decision Viterbi decoder case, the symbols {yk′} are first
passed through a demodulator. The demapped bits are then
deinterleaved and used as inputs to a hard decision Viterbi
decoder.

A. SCM Results

In SCM simulations, we used the industry standard 1/2 rate
(133,171) convolutional encoder with constraint length k = 7.
The bit interleaver given in IEEE 802.11a documentation, [9],
is used before modulating the bits onto 64 QAM constellation.
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Puncturing is used to achieve 3/4 rate for the simulations. We
assumed perfect knowledge of the channel and the received
signal is equalized with this knowledge to obtain {yk′}.

Simulation results for SCM are given in Figures 7 (a) and
(b) for AWGN and Rayleigh channel, respectively. It is easy
to see that simulation results agree with our findings as given
in equations (3), (7) and (8). Hence, by using the proposed
metrics in (7) or in (8), the complexity of the decoder is
lowered significantly without compromising the performance.
Our simulation results also showed that the bit metrics given
in Figures 5 and 6 gives the same performance as the metrics
of (3), (7) and (8).
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Fig. 7. SCM 3/4 Rate 64 QAM, BER vs SNR in dB curves, (a) over AWGN
(b) over Rayleigh

B. MCM Results

For MCM simulations, we used the wireless local area
network (WLAN) standard IEEE 802.11a, [9]. IEEE 802.11a
deploys orthogonal frequency division multiplexing (OFDM)
with 48 data carriers. Bit-interleaving is deployed at the
transmitter for IEEE 802.11a systems. At the receiver, the
channel is estimated using the special training sequences of
an IEEE 802.11a package. Received signal is equalized using
this channel estimation to obtain {yk′}. We ran the simulations
on IEEE 802.11a at 54 Mbps mode (3/4 rate, 64 QAM).

Bit error rate (BER) vs SNR, and packet error rate (PER) vs
SNR curves for AWGN channel are given in Figure 8. BER
vs SNR, and PER vs SNR curves for Rayleigh channel are
given in Figure 9. As expected, the bit metrics given in the
equations (3), (7) and (8), and in the Figures 5 and 6 have the
same performance.

V. CONCLUSION

BICM plays an important role in wireless communications.
In this paper we showed that for M -ary QAM systems the
complexity of a Viterbi decoder used for BICM can be
significantly lowered without compromising the performance.
This is achieved by Gray encoding the in-phase and quadrature
components of a QAM signal separately, and then combining
them to have an M -ary QAM constellation. As a result, soft-
decision bit metrics are simplified to the minimum distance
between the received symbol and

√
M/2 points on the real

line R
1, instead of the minimum distance between the re-

ceived symbol and M/2 points on the complex plane. This
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Fig. 8. IEEE 802.11a at 54 Mbps mode over AWGN channel, (a) BER vs
SNR (b) PER vs SNR
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reduces the complexity of the decoder substantially without
compromising the performance.

Simulation results for SCM and MCM systems agreed that
the proposed new metrics have the same performance as the
original ones while the complexity of a decoder is reduced
significantly.

In addition, we showed that the optimum BICM metrics
can be simplified for implementation without degrading per-
formance.
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