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Abstract— Wireless systems often implement one or more types
of diversity in order to achieve reliable communication. Different
types of diversity techniques such as temporal, frequency, code,
and spatial have been developed in the literature. In addition to
the destructive multipath nature of wireless channels, frequency
selective channels pose intersymbol interference (ISI) while
offering frequency diversity for successfully designed systems.
Orthogonal frequency division multiplexing (OFDM) has been
shown to combat ISI extremely well by converting the frequency
selective channel into parallel flat fading channels. On the other
hand, bit interleaved coded modulation (BICM) was shown
to have high performance for flat fading Rayleigh channels.
Combination of BICM and OFDM was shown to exploit the
diversity that is inherited within the frequency selective fading
channels. In other words, BICM-OFDM is a very effective tech-
nique to provide diversity gain, employing frequency diversity.
Orthogonal space-time block codes (STBC) make use of diversity
in the space domain by coding in space and time. Thus, by
combining BICM-OFDM and STBC, diversity in frequency and
space can be taken advantage of. In this paper we show and
quantify both analytically and via simulations that for frequency
selective fading channels, BICM-STBC-OFDM systems can fully
and successfully exploit the frequency and space diversity to the
maximum available extent.

I. INTRODUCTION

Problems due to multipath and interference from other users
in wireless channels are well known. In order to alleviate
these problems, a number of diversity techniques have been
proposed. There are examples of such techniques in time,
frequency, space, and code domains.

An important way to achieve this diversity for coded
systems was invented by Zehavi who showed that the code
diversity could be improved by bit-wise interleaving [1]. Using
an appropriate soft-decision bit metric at a Viterbi decoder,
Zehavi achieved a code diversity equal to the smallest number
of distinct bits, rather than channel symbols, along any error
event. On the other hand, the order of diversity for any coded
system with a symbol interleaver is the minimum number
of distinct symbols between codewords. This difference be-
tween bit-wise interleaving and symbol interleaving results
in improved performance for BICM over a fading channel.
Following Zehavi’s paper, Caire et al [2] presented the theory
behind BICM. Their work provides tools to evaluate the

performance of BICM with tight error probability bounds, and
design guidelines.

However, when there is frequency selectivity in the channel,
the design of appropriate codes becomes a more complicated
problem due to the existence of intersymbol interference
(ISI). On the other hand, frequency selective channels offer
additional frequency diversity [3], [4], and carefully designed
systems can exploit this property. OFDM can be used to
combat ISI and therefore can simplify the code design problem
for frequency selective channels. It is shown in [5] that the
combination of BICM and OFDM systems can achieve the full
diversity order of L for L-tap frequency selective channels.

In recent years deploying multiple transmit antennas has
become an important tool to improve diversity. The use of
multiple transmit antennas allowed significant diversity gains
for wireless communications. In general, spatial diversity
systems are called space-time (ST) codes and some important
results can be listed as [6], [7], [8], [9], [10]. In these papers
the multi input multi output (MIMO) wireless channel is
assumed to be flat fading. If the channel is frequency selective,
then carefully designed space-time-frequency coded systems
have been proposed to exploit the diversity order in space
and frequency, [11], [12], [13], [14], [15], [16]. Out of these
papers [15] combines space time block codes (STBC) of [7]
and [8] with bit interleaving for OFDM systems. Reference
[16] uses BICM-OFDM directly with multiple antennas and
without external STBC to achieve higher data rate in the cost
of lower diversity.

In [5] it is shown that BICM-OFDM can successfully
exploit the frequency diversity for single antenna systems.
Here, STBC is added to BICM-OFDM to exploit the diversity
not only in frequency but also in space to its maximum
extent. The results of [5] are used as a basis to carry out the
analysis for BICM-STBC-OFDM. The reader is urged to note
that unlike [15], we formally prove that BICM-STBC-OFDM
systems can achieve the full diversity order that can be offered
by the channel. In addition to analysis, through simulations,
the performance of BICM-STBC-OFDM as compared to [6]
and [10] with OFDM are illustrated. We will show that for
systems employing N transmit and M receive antennas, over
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L-tap frequency selective channels, BICM-STBC-OFDM can
achieve the maximum diversity order of NML.

The rest of the paper is organized as follows. We present
brief overviews of STBC and BICM in Sections II and III,
respectively. The system model for BICM-STBC-OFDM is
introduced in Section IV. The diversity order of BICM-STBC-
OFDM system over frequency selective fading channels is
given in Section V. Simulation results supporting our analysis
are presented in Section VI. Finally, we end the paper with a
brief conclusion in Section VII where we restate the important
results of this paper.

II. SPACE TIME BLOCK CODES (STBC)

Complex orthogonal space time block codes [8] are consid-
ered in this paper. For N transmit antennas, S/T rate STBC is
defined as the complex orthogonal block code which transmits
S symbols over T time slots. Code generator matrix GSTN is
a T × N matrix and satisfies [8]

GH
STNGSTN = κ(|x1|2 + |x2|2 + . . . + |xS |2)IN (1)

where κ is a positive constant and {xi}S
i=1 are the complex

symbols transmitted in one STBC codeword. For example,
Alamouti code [7] is a rate one STBC given as

G222 =
[

x1 x2

−x∗
2 x∗

1

]
(2)

III. BIT-INTERLEAVED CODED MODULATION (BICM)

BICM can be obtained by using a bit interleaver, π, between
an encoder for a binary code C and a memoryless modulator
over a signal set χ ⊆ C of size |χ| = M = 2m with a binary
labeling map µ : {0, 1}m → χ. Gray encoding is used to map
the bits onto symbols and plays an important role in BICM’s
performance for non-iterative decoding, [2]. It is shown in [17]
that the capacity of BICM is surprisingly close to the capacity
of multilevel codes (MLC) scheme if and only if Gray labeling
is used. Moreover, Gray labeling allows parallel independent
decoding for each bit. In [17] it is actually recommended to use
Gray labeling and BICM for fading channels. If set partition
labeling or mixed labeling is used, then an iterative decoding
approach should be used to achieve high performance [18].
Note that, due to the ability of independent parallel decoding
of Gray labeling, iterative decoding does not introduce any
performance improvement [18]. Therefore, non-iterative max-
imum likelihood (ML) decoding is considered in this paper.

During transmission, the code sequence c is interleaved by
π, and then mapped onto the signal sequence x ∈ χ. The
signal sequence x is then transmitted over the channel.

The bit interleaver can be modeled as π : k′ → (k, i) where
k′ denotes the original ordering of the coded bits ck′ , k denotes
the time ordering of the signals xk transmitted, and i indicates
the position of the bit ck′ in the symbol xk.

Let χi
b denote the subset of all signals x ∈ χ whose label

has the value b ∈ {0, 1} in position i. Then, the ML bit metrics
are given by [2]

Fig. 1. Block diagram of BICM-STBC-OFDM

λi(yk, ck′) =




max
x∈χi

c
k′

log pθk
(yk|x), perfect CSI

max
x∈χi

c
k′

log p(yk|x), no CSI
(3)

where θk denotes the channel state information (CSI) for the
time order k.

Following (3), the bit metrics for the flat fading Rayleigh
channels can be calculated using the ML criterion with CSI
as [1]

λi(yk, ck′) = min
x∈χi

c
k′
‖yk − ρx‖2 (4)

where ρ denotes the Rayleigh coefficient and ‖(·)‖2 represents
the squared Euclidean norm of (·).

The ML decoder at the receiver can make decisions accord-
ing to the rule

ĉ = arg min
c∈C

∑
k′

λi(yk, ck′). (5)

IV. SYSTEM MODEL OF BICM-STBC-OFDM

In BICM-STBC-OFDM, a rate S/T STBC is used to code
the tones of an OFDM symbol across time and space, and
BICM is applied for coded modulation. One OFDM symbol
has K tones, where each tone is a complex constellation
point. STBC for the tone k is given by the T × N matrix
C(k) = GSTN (x1(k), . . . , xS(k)), which is calculated by
applying the symbols x1(k), . . . , xS(k) to the STBC generator
matrix GSTN .

The output bits of a convolutional encoder are interleaved
within T OFDM symbols to avoid extra delay requirement to
start decoding at the receiver. After interleaving, the output
bit ck′ is mapped onto the tone xs(k) at the ith bit location,
where 1 ≤ s ≤ S. It is assumed that an appropriate length of
cyclic prefix (CP) is used for each OFDM symbol. As a result,
the received signal for each tone over M receive antennas is
given by the T × M matrix

R(k) = C(k)H(k) + N(k) (6)

where N(k) is a T × M complex additive white Gaussian
noise with zero mean and variance N0 = N/SNR, and H(k)
is given by
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Fig. 2. Gray encoded 16 QAM constellation

H(k) =




H11(k) H12(k) · · · H1M (k)
H21(k) H22(k) · · · H2M (k)

...
...

. . .
...

HN1(k) HN2(k) · · · HNM (k)




N×M

Hnm(k) = WH(k)hnm

W(k) = [1 W k
K · · · W

(L−1)k
K ]H , where W k

K
�
= e−j 2π

K

hnm = [hnm(0) hnm(1) · · · hnm(L − 1)]T (7)

where hnm represents the L tap frequency selective channel
from the transmit antenna n to the receive antenna m. Each
tap is assumed to be statistically independent and modeled as
zero mean complex Gaussian random variable with variance
1/L. It is assumed that the taps are spaced at integer multiples
of the symbol duration, which is the worst case scenario in
terms of designing full diversity codes [19]. The fading model
is assumed to be quasi-static, i.e., the fading coefficients are
constant over the transmission of one packet, but independent
from one packet transmission to the next. Note that, the aver-
age energy transmitted from each antenna at each subcarrier
is assumed to be 1. Then, with the given channel and noise
models, the received signal to noise ratio is SNR.

V. DIVERSITY ORDER OF BICM-STBC-OFDM

In this section, by calculating the pairwise error probability
(PEP), we will show that BICM-STBC-OFDM can achieve the
maximum achievable diversity order of NML. Assume that
binary codeword c is sent and ĉ is detected. Then, the PEP is
written as

P (c → ĉ|H) = P



∑
k′

min
xs∈χi

c
k′
‖R(k) − CH(k)‖2

F ≥∑
k′

min
xs∈χi

ĉ
k′

‖R(k) − ĈH(k)‖2
F



(8)

where ‖(·)‖2
F denotes ‖(·)‖2

F = Tr{(·)H(·)} (square of the
Frobenius norm of (·)), and C and Ĉ denote the two distinct
STBC codewords.

Note that ‖R(k)−CH(k)‖2
F provides S equations to decode

S symbols within STBC C [8], [9]. As mentioned in Section
IV, the output bit ck′ is mapped onto the ith bit of xs(k).
So the bit metric for each ck′ is found by minimizing the sth
equation given by ‖R(k) − CH(k)‖2

F with respect to xs ∈
χi

ck′ .

For a k0/n0 convolutional code with the minimum Ham-
ming distance dfree, the worst case scenario in (8) simplifies
to a summation for only dfree terms. Note that, for the dfree

points ĉk′ = c̄k′ , where (̄·) denotes the binary complement of
(·). Also, χi

ck′ and χi
c̄k′ are complement sets of constellation

points within the signal constellation set χ (see Figure 2 for
16 QAM example). Let’s denote

C̃(k) = arg min
C=GST N (x1,...,xS)

s.t. xs∈χi
c
k′

‖R(k) − CH(k)‖2
F

Ĉ(k) = arg min
Ĉ=GST N (x1,...,xS)

s.t. xs∈χi
c̄
k′

‖R(k) − ĈH(k)‖2
F (9)

C̃(k) and Ĉ(k) are distinct two matrices whose sth elements
are from χi

ck′ and χi
c̄k′ , respectively. For convolutional codes,

dfree distinct bits between any two codewords occur in con-
secutive trellis branches. The bit interleaver can be designed
such that consecutive �dfree/n0�n0 bits are mapped onto
�dfree/n0�n0 different tones of an OFDM symbol. This guar-
antees that there exists dfree distinct pairs of (C̃(k), Ĉ(k))
for PEP analysis. Also note that, ‖R(k) − C(k)H(k)‖2

F ≥
‖R(k) − C̃(k)H(k)‖2

F , and C(k) 	= Ĉ(k) for the dfree

matrices under consideration. Then, (8) can be rewritten as

P (c → ĉ|H) = P


 ∑

k,dfree

‖R(k) − C̃(k)H(k)‖2
F−

‖R(k) − Ĉ(k)H(k)‖2
F

≥ 0




≤ P


 ∑

k,dfree

‖R(k) − C(k)H(k)‖2
F−

‖R(k) − Ĉ(k)H(k)‖2
F

≥ 0




(10)

= P




 ∑

k,dfree

Tr

{
HH(k)(C(k) − Ĉ(k))H

(C(k) − Ĉ(k))H(k)

}− β ≤ 0




(11)

where β =
∑

k,dfree
β(k), and β(k) = Tr{HH(k)(Ĉ(k) −

C(k))HN(k) + NH(k)(Ĉ(k) − C(k))H}. β(k)s are zero-
mean, independent complex Gaussian random variables
with variance 2N0‖(Ĉ(k) − C(k))H‖2

F . Then, β is
a zero-mean Gaussian random variable with variance
2N0

∑
k,dfree

‖(Ĉ(k) − C(k))H‖2
F . Note that, the upper

bound in (10) is tight, since for high SNR values C̃(k) =
C(k). Finally, PEP can be written as

P (c → ĉ|H) ≤ P


β ≥

∑
k,dfree

‖(C(k) − Ĉ(k))H(k)‖2
F




≤ Q



√√√√ ∑

k,dfree

‖(C(k) − Ĉ(k))H(k)‖2
F

2N0



(12)
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where Q(·) is the well-known Q-function.
Let’s define D(k) = C(k) − Ĉ(k), which is still a T × N

(generalized) complex orthogonal design (i.e., D(k) satisfies
(1)). H(k) can be rewritten as

H(k) =WH(k)h

W(k) =




W(k) 0L×1 · · · 0L×1

0L×1 W(k) · · · 0L×1
...

...
. . .

...
0L×1 0L×1 · · · W(k)




NL×N

h =




h11 h12 · · · h1M

h21 h22 · · · h2M
...

...
. . .

...
hN1 hN2 · · · hNM




NL×M

(13)

where 0L×1 denotes a zero vector of size L × 1. Then,

∑
k,dfree

‖D(k)H(k)‖2
F =Tr{hHZh}

Z =
∑

k,dfree

Zk

Zk =W(k)DH(k)D(k)WH(k) (14)

From (1), DH(k)D(k) = |d(k)|2IN , where |d(k)|2 =
κ(|d1(k)|2 + |d2(k)|2 + . . . + |dS(k)|2) is a non-zero positive
constant with di(k)s denoting the S complex numbers of
D(k), and IN is the N × N identity matrix. Then, Zk can
be written as

Zk =




Ak 0L×L · · · 0L×L

0L×L Ak · · · 0L×L
...

...
. . .

...
0L×L 0L×L · · · Ak




NL×NL

(15)

Ak =|d(k)|2




1 W k
K · · · W

(L−1)k
K

W−k
K 1 · · · W

(L−2)k
K

...
...

. . .
...

W
−(L−1)k
K W

−(L−2)k
K · · · 1




L×L
(16)

where each Ak is also Hermitian with a square root W(k)d∗(k)
such that Ak = W(k)d∗(k)(W(k)d∗(k))H , and rank(Ak) =
1. Then, rank(Zk) = N . It is shown in [5], the rank of the
L × L matrix A =

∑
k,dfree

Ak is min(dfree, L). Then,

Z =




A 0L×L · · · 0L×L

0L×L A · · · 0L×L
...

...
. . .

...
0L×L 0L×L · · · A




NL×NL

(17)

has rank r = N min(dfree, L). From linear algebra, it
is known that any matrix with a square root is positive

semidefinite [6], [20]. Also, any non-negative linear combina-
tion of positive semidefinite matrices is positive semidefinite.
Therefore Aks and A are positive semidefinite, and similarly
Zks (with a square root W(k)DH(k)) and Z are positive
semidefinite. Then, the singular value decomposition of Z can
be written as [20]

Z = V HΛV (18)

where V is a unitary matrix and Λ is a diagonal matrix with
eigenvalues of Z, {λi}NL

i=1, on the diagonal. Note that the
eigenvalues of the positive semidefinite matrix Z are real and
non-negative. As a result,

∑
k,dfree

‖D(k)H(k)‖2
F =Tr{hHZh} = Tr{hHV HΛV h}

=
M∑

m=1

NL∑
n=1

λn|vnm|2 (19)

where vnm, n = 1, . . . , NL, m = 1, . . . ,M are the elements
of the NL × M matrix V h. Note that each vnm is a
complex Gaussian random variable. Then, |vnm| are Rayleigh
distributed with pdf 2|vnm|e−|vnm|2 . Using an upper bound
for the Q function Q(x) ≤ (1/2)e−x2/2, PEP can be found as

P (c → ĉ) = E [P (c → ĉ|H)]

≤ E


1

2
exp


−

M∑
m=1

NL∑
n=1

λn|vnm|2

4N0




 =

1
NL∏
n=1

(
1 + λn

4N0

)M
(20)

For rank(Z) = r = N min(dfree, L), without loss of
generality we can order the λn’s such that, λ1 ≥ λ2 . . . ≥ λr

and λr+1 = . . . = λNL = 0. Using N0 = N/SNR from
Section IV, PEP becomes upper bounded by

P (c → ĉ) ≤ 1
r∏

n=1

(
1 + λnSNR

4N

)M



(

r∏
l=1

λl

)−M (
SNR

4N

)−rM

for high SNR

(21)

It is clearly evident from (21) that the BICM-STBC-
OFDM system successfully reaches to the diversity order of
NM min(dfree, L).

VI. SIMULATION RESULTS

In our simulations, each OFDM symbol has 64 tones, and
has a duration of 4 µs of which 0.8 µs is CP. 250 bytes
are sent with each packet and the channel is assumed to
be the same through the transmission of one packet. The
maximum delay spread of the channel is set to be ten times
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the root mean square (rms) delay spread. The system has two
transmit antennas for all the results presented in this section.
For BICM-STBC-OFDM, Alamouti’s code [7] is used in order
to implement two transmit antennas.

Figure 3 shows the results for the industry standard
(133,171) 1/2 rate 64 states dfree = 10 convolutional code
with different rms delay spread values. It can be seen from
the figures that as the number of taps increases in the channel,
the diversity order of BICM-STBC-OFDM increases up to the
maximum diversity of NM min(dfree, L). Note that, as the
number of receive antennas is increased, the diversity order
gets multiplied in the figures. For 2 transmit 4 receive antenna
case, even at low SNR values, the performance curve is
extremely steep.
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Fig. 3. BICM-STBC-OFDM results using 1/2 rate 64 states dfree = 10
code

Figure 4 shows the performance curves for 4 state BICM-
STBC-OFDM, 4 state QPSK SOSTTC [10] with OFDM,
and 4 State QPSK STTC [6] with OFDM. 4 state 1/2 rate
dfree = 5 convolutional code [21] with 16 QAM modulation is
used for BICM-STBC-OFDM so that all the systems transmit
2 bits/sec/Hz at each tone. As can be seen from the figures,
BICM-STBC-OFDM reaches a higher diversity value for
frequency selective channels.

20 25 30 35 40 45 50
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

2 bits/sec/Hz per tone 2 Transmit 1 Receive Antennas over 50 ns rms delay spread (11 Taps) Channel

SNR in dB

B
it 

E
rr

or
 R

at
e

BICM−STBC−OFDM 16 QAM 4 State rate 1/2
STTC−OFDM 4 States QPSK
SOSTTC−OFDM 4 States QPSK

(a) BER vs SNR

20 25 30 35 40 45 50
10

−4

10
−3

10
−2

10
−1

10
0

2 bits/sec/Hz per tone 2 Transmit 1 Receive Antennas over 50 ns rms delay spread (11 Taps) Channel

SNR in dB

P
ac

ke
t E

rr
or

 R
at

e

BICM−STBC−OFDM 16 QAM 4 State rate 1/2
STTC−OFDM 4 States QPSK
SOSTTC−OFDM 4 States QPSK

(b) PER vs SNR

Fig. 4. Comparison between BICM-STBC-OFDM, SOSTTC-OFDM and
STTC-OFDM

VII. CONCLUSION

Diversity order being defined as the negative slope of the
error rate vs signal to noise ratio curve, is a dominant criterion
for the performance of wireless communication systems. In
this paper we introduced BICM-STBC-OFDM in order to
exploit diversity in space and frequency. We have shown both

analytically and via simulations that BICM-STBC-OFDM
reaches the maximum diversity order in space and frequency
by using an appropriate convolutional code. If the convolu-
tional code being used has a minimum Hamming distance of
dfree, we showed that the diversity order of BICM-STBC-
OFDM is NM min(dfree, L) for a system with N transmit
and M receive antennas over an L tap frequency selective
fading channel.
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