
Reduction of ML Decoding Complexity for MIMO
Sphere Decoding, QOSTBC, and OSTBC

Luay Azzam and Ender Ayanoglu

Center for Pervasive Communications and Computing
Department of Electrical Engineering and Computer Science

University of California, Irvine
email: lazzam@uci.edu, ayanoglu@uci.edu

Abstract— In this paper, we discuss three applications of the
QR decomposition algorithm to decoding in a number of Multi-
Input Multi-Output (MIMO) systems. In the first application,
we propose a new structure for MIMO Sphere Decoding (SD).
We show that the new approach achieves 80% reduction in the
overall complexity compared to conventional SD for a 2 × 2
system, and almost 50% reduction for the 4 × 4 and 6 × 6
cases. In the second application, we propose a low complexity
Maximum Likelihood Decoding (MLD) algorithm for quasi-
orthogonal space-time block codes (QOSTBCs). We show that for
N = 8 transmit antennas and 16-QAM modulation scheme, the
new approach achieves > 97% reduction in the overall complexity
compared to conventional MLD, and > 89% reduction compared
to the most competitive reported algorithms in the literature. This
complexity gain becomes greater when the number of transmit
antennas (N ) or the constellation size (L) becomes larger. In
the third application, we propose a low complexity Maximum
Likelihood Decoding (MLD) algorithm for orthogonal space-
time block codes (OSTBCs) based on the real-valued lattice
representation and QR decomposition. For a system employing
the well-known Alamouti OSTBC and 16-QAM modulation
scheme, the new approach achieves > 87% reduction in the
overall complexity compared to conventional MLD. Moreover,
we show that for square L-QAM constellations, the proposed
algorithm reduces the decoding computational complexity from
O(LN/2) for conventional MLD to O(L) for systems employing
QOSTBCs and from O(L) for conventional MLD to O(

√
L) for

those employing OSTBCs without sacrificing the performance.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) communication
systems provide high data rates and improved performance
without increasing the bandwidth or transmitted power. Con-
sequently, MIMO techniques have become a significant part
of most current wireless systems. Maximum Likelihood De-
coding (MLD) is the optimum decoding algorithm that is
used for MIMO systems [1]. However, MLD complexity
increases exponentially with the number of antennas and the
constellation order being used for modulation [2]. Therefore,
Sphere Decoder (SD) or the Fincke-Pohst algorithm [3], [4]
was proposed as an alternative to provide MLD performance
with less complexity.

The use of Space-time block codes (STBCs) along with
MIMO is very useful to maximize spatial diversity and intro-
duce high capacity gains [5]. Among these codes we focus on
orthogonal space-time block codes (OSTBCs) [6] and quasi-

orthogonal space-time block codes (QOSTBCs) [7]-[9]. OST-
BCs are attractive since they achieve the maximum diversity,
the maximum coding gain, and the highest throughput [6]
as well as simple MLD. However, full-rate OSTBCs do not
exist for systems with more than N = 2 transmit antennas
[10]. Consequently, QOSTBCs were proposed in which the
constraint of orthogonality is relaxed to obtain higher symbol
transmission rate [7]-[9]. In general, QOSTBCs do not achieve
the full diversity provided by the channel. Therefore, a number
of rotation techniques were proposed to provide full diversity
[11]-[14].

MLD of QOSTBCs is performed by searching over a subset
of the total number of transmitted symbols. More specifically,
a joint detection of at least two complex symbols is required
for a full-rate system with N = 4 antennas, or 3/4-rate
system with N = 8. For the full-rate system with N = 8,
four complex symbols are jointly detected to obtain the ML
solution [12], [15]. Unlike OSTBCs, the decoding complexity
is no longer linear, but rather, increases exponentially with N ,
i.e., O(LN/2) where L is the size of the L-QAM constella-
tion [15], [16]. For OSTBCs, MLD is performed simply by
decoding each transmitted symbol independently, resulting in
linear decoding complexity [10], [17].

The decoding complexity is very critical for practical em-
ployment of MIMO systems. Therefore, the development of
low complex decoding algorithms while providing optimal
performance is always a necessity for wireless communica-
tion systems. In this paper, we focus on SD complexity for
uncoded systems as well as MLD complexity for OSTBCs
and QOSTBCs. We propose a new lattice representation to be
used for SD which is verified to reduce the overall decoding
complexity while providing optimal performance. This new
structure, along with a couple of techniques (adaptive k-best
and quantization [18]), enables reduction of the decoding com-
plexity by > 50% compared to conventional SD. Subsequently,
we introduce a novel optimal decoding algorithm for square
QAM constellations based on QR decomposition of the real-
valued lattice representation and show that the optimal MLD
performance for QOSTBCs and OSTBCs is obtained with a
substantial reduction in the decoding complexity.

The remainder of this paper is organized as follows: In
Section II, we briefly discuss SD algorithm and propose



the new lattice representation. In Section III, we define the
system model for QOSTBCs and introduce our new decoding
algorithm. A brief discussion on diversity is provided. In
Section IV, we propose a simplified MLD algorithm for
systems employing OSTBCs. Simulation results are included
in Section V. Finally, we conclude the paper in Section VI.

II. SPHERE DECODING

A. Conventional SD Algorithm

Consider a MIMO system with N transmit and M receive
antennas. The received signal vector is given by

y = Hs+ v (1)

where y ∈ C
M is an M-dimensional received complex vector,

s ∈ C
N is an N-dimensional transmitted complex vector whose

entries have real and imaginary parts that are integers, H ∈
C

MxN is the channel matrix, v ∈ C
M is the i.i.d. complex

additive white Gaussian noise (AWGN) vector with zero-mean
and covariance matrix σ2I . Usually, the elements of the vector
s are constrained to a finite set Ω where Ω ⊂ Z

2N , e.g.,
Ω = {−3,−1, 1, 3}2N for 16-QAM where Z and C denote
the sets of integers and complex numbers respectively.

Assuming H is known at the receiver, the ML detection is
given by

ŝ = argmin
s∈Ω

||y −Hs||2. (2)

Solving (2) becomes impractical and exhaustive for high
transmission rates, and the complexity grows exponentially
[19]. Therefore, SD solves this problem by searching for the
closest point among all lattice points that lie inside a sphere
centered around the received vector y and of radius d [3],
[20], [21]. The algorithm runs recursively until all lattice points
inside the sphere are found. If no points were found inside the
sphere, then we increase the radius and start over again. Now,
introducing this radius constraint on (2) changes the problem
to

ŝ = argmin
s∈Ω

||y −Hs||2 < d2. (3)

A frequently used solution for the QAM-modulated complex
signal model given in (3) is to decompose the N -dimensional
problem into a 2N -dimensional real-valued problem, which
then can be written as
[

<{y}
={y}

]

=

[

<{H} −={H}
={H} <{H}

] [

<{s}
={s}

]

+

[

<{v}
={v}

]

(4)
where <{y} and ={y} denote the real and imaginary parts
of y respectively. Assuming N = M and introducing the QR
decomposition of H , where R is an upper triangular matrix,
and the matrix Q is unitary, (3) can be written as

ŝ = argmin
s∈Ω

||ȳ −Rs||2 < d2 (5)

where ȳ = QHy. Let R = [ri,j ]2Nx2N and note that R is
upper triangular, then the search can be performed by starting
from i = 2N and working backwards. Whenever a valid lattice
point is found inside the sphere, the square of the sphere radius

d2 is set to the newly found point weight, thus reducing the
search space for finding other candidate solutions.

To this end, it is important to emphasize the fact that the
complexity of SD algorithm, although much lower than MLD
is still high and can be further reduced as will be shown in
this paper.

B. New Lattice Representation

The lattice representation given in (4) imposes a major
restriction on the search algorithm. Specifically, the search is
executed serially from one layer to another. This can be made
clearer by writing the partial metric weight formula as

wl(x
(l)) = wl+1(x

(l+1)) + |ŷl −
2N
∑

k=l

rl,kxk|2 (6)

with l = 2N, 2N − 1, . . . , 1, w2N+1(x
(2N+1)) = 0 and

where {x1, x2, ..., xN}, {xN+1, xN+2, ..., x2N} are the real
and imaginary parts of {s1, s2, ..., sN} respectively

Obviously, SD starts from the last layer (l = 2N ), working
its way up one layer at a time, computing the partial weight
metric of one or more points in the lattice space and taking
out those points that violate the radius constraint until reaching
the first layer (l = 1). According to this representation, it is
impossible for instance to calculate

∑2N
k=l rl,kxk in (6) for a

lattice point that lies at layer l = 2N − 1 without assigning
an estimate for x2N. This approach results in two related
drawbacks. First, the decoding of any xl requires an estimate
value for all preceding xj for j = l + 1, ..., 2N . Secondly,
there is no room for parallel computations since the structure
of the tree search is sequential.

Our goal is to relax the lattice structure and make it more
flexible for parallelism. Concurrently, we attempt to reduce the
number of computations required at each lattice point. This
can be done by making the decoding of every two adjacent
layers totally independent of each other. To do so, we start by
reshaping the channel matrix representation given in (4) to the
following form

H̃=















<(H1,1) −=(H1,1) · · · <(H1,N ) −=(H1,N )
=(H1,1) <(H1,1) · · · =(H1,N ) <(H1,N )

...
...

. . .
...

...
<(HN,1) −=(HN,1) · · · <(HN,N ) −=(HN,N )
=(HN,1) <(HN,1) · · · =(HN,N ) <(HN,N )















where Hm,n is the i.i.d. complex path gain from transmit
antenna n to receive antenna m. By careful observation of the
columns of H̃ starting from the left hand side, and defining
each pair of columns as one set, we note that the columns
in each set are orthogonal, a property that has a substantial
effect on the structure of the problem. Using this channel
representation changes the order of detection of the transmitted
symbols from

ŝ =
[

<(s1) · · · <(sN ) =(s1) · · · =(sN )
]T



to the following order

ŝ =
[

<(s1) =(s1) · · · <(sN ) =(sN )
]T

.

This structure becomes advantageous after applying the QR
decomposition to H̃ . By doing so, and due to that special
form of orthogonality among the columns of each set, all the
elements rk,k+1 for k = 1, 3, ..., 2N−1 in the upper triangular
matrix R become zero. This allows parallel detection of
the real and imaginary parts of every detected symbol and
significantly reduces the overall decoding complexity.

In [18], we provide a mathematical proof to show that
rk,k+1 = 0 for k = 1, 3, ..., 2N − 1. This proof is based
on the Gram-Schmidt algorithm. We also propose a number
of techniques that can be used on top of the new lattice
representation to further reduce the computational complexity
of SD.

III. QUASI-ORTHOGONAL SPACE-TIME CODING

A. System Model and Proposed Algorithm
Consider a MIMO system with N transmit and M receive

antennas, and an interval of T symbols during which the
channel is constant. The received signal is given by

Y =

√

ρ

N
CNH + V (7)

where Y = [yjt ]T×M is the received signal matrix of size
T×M and whose entry yjt is the signal received at antenna j
at time t, t = 1, 2, . . . , T , j = 1, 2, . . . ,M ; V = [vjt ]T×M is
the noise matrix; and CN = [cit]T×N is the transmitted signal
matrix whose entry cit is the signal transmitted at antenna i at
time t, t = 1, 2, . . . , T , i = 1, 2, . . . , N . H = [hi,j ]N×M is
the channel coefficient matrix of size N×M whose entry hi,j
is the channel coefficient from transmit antenna i to receive
antenna j. The entries of the matrices H and V are mutually
independent, zero-mean, and circularly symmetric complex
Gaussian random variables of unit variance; and the parameter
ρ is the signal-to-noise-ratio (SNR) per receiving antenna.

Assuming that the channel H is known at the receiver,
the ML estimate is obtained at the decoder by performing
min
C
||Y −

√

ρ
NCH||

2

F
, where ||.||F is the Frobenius norm.

For QOSTBCs, the measure ||Y −
√

ρ
NCH||

2

F
can be de-

coupled into two parts, where each part solves N/2 symbols
concurrently [16]. A number of techniques were proposed in
the literature to reduce the decoding complexity [22], [23]. In
this paper, we show that this complexity can still be reduced
substantially. In the following, we only consider M = 1 for
simplicity.

We start by rewriting (7) in matrix form, then we have










y1
y2
...
yT











= CN











h1,1
h2,1

...
hN,1











+











v1
v2
...
vT











. (8)

We decompose the T -dimensional complex problem defined
by (8) to a 2T -dimensional real-valued problem. Applying the

new lattice representation discussed in the previous section to
(8), we obtain















<(y1)
=(y1)

...
<(yT )
=(yT )















= Ȟ















<(s1)
=(s1)

...
<(sm)
=(sm)















+















<(v1)
=(v1)

...
<(vT )
=(vT )















(9)

where Ȟ is the equivalent real-valued channel whose real-
valued fading coefficients are defined using the complex fading
coefficients hi,j from transmit antenna i to receive antenna j
as h2n−1 = <(hn,1), and h2n = =(hn,1) for n = 1, 2, . . . , N .
Now, we specify the complex transmitted symbols of CN by
their real and imaginary parts as sm = x2m−1+jx2m for m =
1, 2, . . . , ns where ns is the number of transmitted symbols per
code block and defined as ns = Tr, where r is the code rate.
Then (9) is equivalent to

ỹ = H̃x+ ṽ. (10)

In this paper, we focus on the full rate QOSTBC using
N = 4 and defined as

C4 =









s1 s3 s4 s2
s∗3 −s∗1 s∗2 −s∗4
s∗4 s∗2 −s∗1 −s∗3
s2 −s4 −s3 s1









. (11)

Note that the following derivation is applicable to arbitrary N .
The reader is referred to [24] for more details.

Using (11), the equivalent channel matrix Ȟ =
[

ȟ1 ȟ2 . . . ȟ8
]

, where ȟk is the k-th column of Ȟ ,
is given by

Ȟ =

























h1 −h2 h7 −h8 h3 −h4 h5 −h6
h2 h1 h8 h7 h4 h3 h6 h5
−h3 −h4 h5 h6 h1 h2 −h7 −h8
−h4 h3 h6 −h5 h2 −h1 −h8 h7
−h5 −h6 h3 h4 −h7 −h8 h1 h2
−h6 h5 h4 −h3 −h8 h7 h2 −h1
h7 −h8 h1 −h2 −h5 h6 −h3 h4
h8 h7 h2 h1 −h6 −h5 −h4 −h3

























.

We observe that

〈ȟ1, ȟi〉 =0, i 6= 3, 〈ȟ2, ȟi〉 = 0, i 6= 4

〈ȟ5, ȟi〉 =0, i 6= 7, 〈ȟ6, ȟi〉 = 0, i 6= 8. (12)

where 〈ȟi, ȟj〉 is the inner product of columns ȟi and ȟj .
Interchanging the columns of Ȟ such that every two columns
that are not orthogonal to each other become adjacent makes
the subsequent analysis appear in a compact form. Thus, we
rewrite Ȟ as H̃ =

[

ȟ1 ȟ3 ȟ2 ȟ4 ȟ5 ȟ7 ȟ6 ȟ8
]

.
Then, (12) can be rewritten as

〈h̃1, h̃i〉 =0, i 6= 2, 〈h̃5, h̃i〉 = 0, i 6= 6

〈h̃3, h̃i〉 =0, i 6= 4, 〈h̃7, h̃i〉 = 0, i 6= 8. (13)

Consequently, the vectors ỹ, x and ṽ defined in (10) have



the same element values with different rows order given by
1, 3, 2, 4, 5, 7, 6, 8.

Applying QR decomposition to Ȟ in (10), we have

ỹ =QRx+ ṽ

QH ỹ =Rx+QH ṽ

ȳ =Rx+ v̄ (14)

where v̄ and ṽ have the same statistical properties since Q
is unitary and so is QH . Due to (13), it is straightforward to
observe that R is block diagonal of the form

R =









R1,2 0 0 0
0 R3,4 0 0
0 0 R5,6 0
0 0 0 R7,8









(15)

where

Ri,i+1 =

[

ri,i ri,i+1
0 ri+1,i+1

]

i = 1, 3, 5, 7. (16)

Note that the elements of the upper triangular matrix R are
the inner products of columns of H̃ [25]. Note also that the
diagonal elements of R are the norm values of nonzero vectors
[25], and thus ri,i and ri+1,i+1 for i = 1, 3, 5, 7 will never
be zeros. Using (14), the ML problem is now simpler and
rather than minimizing ||Y − CH||2, the solution is obtained
by minimizing the metric ||ȳ − Rx||2 in a layered fashion
over all different combinations of the vector x. To make this
clearer, let the square L-QAM alphabet be given as Ω2, where
Ω = {−

√
L+ 1,−

√
L+ 3, . . . ,

√
L− 1}. Then

x̂ = arg min
x∈Ω8

||ȳ −Rx||2. (17)

Let xi and xi+1 be given as

arg min
xi∈Ω
xi+1∈Ω

[|ȳi+1 − ri+1,i+1xi+1|2 + |ȳi − ri,ixi − ri,i+1xi+1|2]

for i = 1, 3, 5, 7. Then, the decoded message is

x̂ = (x1, x2, . . . , x8)
T .

In other words, the ML solution is obtained by jointly de-
coding two real symbols through a simpler 2× 2 real-valued
upper triangular equivalent channel matrix. Note that this
simplification is obtained through the orthogonality properties
in (13) and the QR decomposition in (14), resulting in (15)
and (16). This is similar to but simpler than [23] and [26] in
that all have joint detection of two real symbols (N/2 times in
[23] and [26] and ns times in this work) but with minimizing
a norm of size 2N in [23] and [26] while minimizing a norm
of size 2 in this work. This means that the original complex
ML problem is decomposed into ns = 4 parallel real-valued
upper triangular problems, each of dimension 2. Writing this
in matrix form, the ML solution is obtained by carrying out

arg min
xi∈Ω,xi+1∈Ω

∣

∣

∣

∣

∣

∣

∣

∣

[

ȳi
ȳi+1

]

−
[

ri,i ri,i+1
0 ri+1,i+1

] [

xi
xi+1

]∣

∣

∣

∣

∣

∣

∣

∣

2

for i = 1, 3, 5, 7.

Obviously, this approach allows finding the ML solution
faster, and requires a small number of computational opera-
tions compared to conventional ML, and decoding algorithms
proposed in [23] and [26].

B. QOSTBC with Full Diversity

In general, QOSTBCs do not achieve the full diversity
provided by the channel. In order to achieve full diversity
and improve the performance at high SNR, a conventional
approach in the literature suggests that half of the symbols in a
quasi-orthogonal design are chosen from a signal constellation
set A and the other half are chosen from a rotated constellation
set ejφA [11], [12]. Another approach is to apply multi-
dimensional rotated constellations which exhibit full diversity
and maximum coding gain [13], [14]. However, no proper
expressions for the rotation matrix of sizes greater than four
exist. Applying the first approach to our algorithm intro-
duces interference among the real symbols. Instead, a two-
dimensional rotation of the real symbols (x1, x2, . . . , x2ns

)
that are not orthogonal to each other is always applied, thus
maintaining the orthogonality properties among the channel
columns and maximizing the diversity. By this, we overcome
the problem of finding proper expressions for the rotation
matrix and maintain the orthogonality properties defined in
(13).

The two-dimensional rotation matrix is defined in [14], [26]
as

G =

[

cos θ − sin θ
sin θ cos θ

]

(18)

where the optimal angle is obtained by θ = 1
2atan(

1
2 ) for

square QAM constellations [23].
For a detailed proof on how (18) achieves full diversity for

arbitrary number of transmit antennas N while maintaining
the same complexity of our proposed algorithm, we refer the
reader to [24].

IV. ORTHOGONAL SPACE-TIME BLOCK CODING

In this section, we introduce a third application of the QR
decomposition algorithm in MIMO decoding. We consider
a MIMO system whose input-output relation is represented
by (7), where CN is an orthogonal space time block code.
Generally, OSTBCs have a very simple and decoupled MLD
algorithm. For an OSTBC of rate r = K/T , the squared norm
||Y − CNH||2F can be decoupled into K parts, where each part
decodes one transmitted complex symbol independently [27].

Consider the OSTBC proposed by Alamouti [17] for N = 2
and defined as

C2 =

(

s1 s2
−s∗2 s∗1

)

. (19)

The receiver decodes s1 and s2 by decomposing the measure
||Y − C2H||2F into two parts, and minimizes each separately
over all possible values of s1 and s2 that belong to the constel-
lation used. In general, the complexity of MLD is O(L) which
is linear with the constellation size L [27]. Thus, the decoding
algorithm can be implemented using only linear processing
at the receiver. In this paper, we show that this complexity



can still be reduced substantially. The proposed algorithm
reduces the decoding complexity from O(L) to O(

√
L) with

a substantial reduction in the number of arithmetic operations
required.

Analogous to the derivation for the QOSTBC case, we
represent the system by its real-valued representation to obtain















<(y1)
=(y1)

...
<(yT )
=(yT )















= Ȟ















<(s1)
=(s1)

...
<(sm)
=(sm)















+















<(v1)
=(v1)

...
<(vT )
=(vT )















. (20)

Since CN is an orthogonal matrix and due to the real-valued
representation of the system using (20), we observe that

• All columns of Ȟ =
[

ȟ1 ȟ2 . . . ȟ2K
]

where ȟi
is the ith column of Ȟ , are orthogonal to each others, or
equivalently

〈ȟi, ȟj〉 =0, i 6= j (21)

• The norm of every column in Ȟ is equal to the norm of
any other column in Ȟ , i.e.,

norm(ȟi) = norm(ȟj), i, j = 1, 2, . . . , 2K. (22)

These two properties have a major impact on the complexity
reduction of our proposed decoding algorithm.

Applying QR decomposition to (20) produces

ȳ =Rx+ v̄ (23)

where R is a 2K×2K diagonal matrix (see [25] for proof), a
property which substantially reduces the decoding complexity.
In fact, due to (21) and (22), QR can be simplified into
two steps. To illustrate this, let Ȟ =

[

ȟ1 ȟ2 . . . ȟ2K
]

where ȟi is the ith column of Ȟ . Then, due to (21) R is
diagonal. The definition of the diagonal elements in R in QR
decomposition is

ri,i =norm(ȟi).

Due to (22) the matrices Q and R are computed by
step 1: calculating the diagonal elements of the matrix R

r1,1 =norm(ȟ1)

ri,i =r1,1

for i = 2, . . . , 2K.
step 2: computing the unitary matrix Q =
[

q1 q2 . . . q2k
]

as

qi = ȟi/ri,i

for i = 1, 2, . . . , 2K.

Using QR algorithm and the above two observations, the
MLD problem is now simpler and rather than minimizing
||Y − CNH||2, the solution is obtained by minimizing the
metric ||ȳ−Rx||2 over all different combinations of the vector

x. In other words, the MLD solution is found by minimizing
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣











ȳ1
ȳ2
...

ȳ2K











−











r1,1 0 · · · 0
0 r2,2 · · · 0
...

...
. . .

...
0 0 · · · r2K,2K
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over all combinations of x ∈ Ω2K . This can be further
simplified as

x̂i = arg min
xi∈Ω

|ȳi − ri,ixi|2 (24)

for i = 1, 2, . . . , 2K. Then, the decoded message is

x̂ = (x̂1, x̂2, . . . , x̂2K)T .

This means that the MLD solution is obtained by decoding
the real and imaginary parts of each complex transmitted
symbol independently through a simple 1 × 1 real-valued
channel matrix, i.e., a real scalar number. To further clarify our
proposed decoding algorithm, we provide some representative
examples.

Example 1: In this example, we consider the Alamouti
OSTBC defined by (19) with N = K = T = 2 and
M = 1. We consider conventional MLD where the transmitted
complex symbols ŝ1 and ŝ2 are decoded by carrying out [10]

ŝ1 = arg min
s1∈Ω2

∣

∣

∣

∣

∣

∣





M
∑
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(

yj1h
∗

1,j + (yj2)
∗h2,j

)



− s1

∣

∣

∣

∣

∣

∣

2

+



−1 +
M
∑

j=1

2
∑

i=1

|hi,j |2


 |s1|2

and,

ŝ2 = arg min
s2∈Ω2

∣

∣

∣

∣

∣

∣





M
∑

j=1

(

yj1h
∗

2,j − (yj2)
∗h1,j

)



− s2

∣

∣

∣

∣

∣

∣

2

+



−1 +
M
∑

j=1

2
∑

i=1

|hi,j |2


 |s2|2.

Obviously, the complexity is linear with the constellation
size since each symbol is being decoded separately. However,
this decoding complexity can be further simplified as illus-
trated in the following example.

Example 2: Again, we consider the Alamouti OSTBC with
N = 2 and M = 1. The system model is given by

[

y1
y2

]

=

[

s1 s2
−s∗2 s∗1

] [

h1,1
h2,1

]

+

[

v1
v2

]

. (25)

Representing (25) in the real domain, we have








<(y1)
=(y1)
<(y2)
=(y2)









= Ȟ








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







+









<(v1)
=(v1)
<(v2)
=(v2)









(26)



where x1 = <(s1), x2 = =(s1), x3 = <(s2), x4 = =(s2) and

Ȟ =









h1 −h2 h3 −h4
h2 h1 h4 h3
h3 h4 −h1 −h2
h4 −h3 −h2 h1









.

Note that the columns of the channel matrix Ȟ are orthogonal.
Thus, applying QR decomposition to (26) and pre-multiplying
both sides with QH produce








ȳ1
ȳ2
ȳ3
ȳ4
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r1,1 0 0 0
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+


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



v̄1
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v̄3
v̄4









.

The MLD finds x̂1, x̂2, x̂3, x̂4 by performing

x̂i = arg min
xi∈Ω

|ȳi − ri,ixi|2 (27)

for i = 1, 2, 3, 4, and the decoded message is x̂ =
(x̂1, x̂2, x̂3, x̂4)

T .
Generally, we observe that the proposed algorithm produces

2K parallel 1 × 1 real-valued subsystems which results in
a simplified MLD problem that can be solved in a parallel
fashion to obtain the optimal solution while substantially
reducing the overall decoding complexity.

V. SIMULATION RESULTS

Figure 1 shows the performance of SD using the new lattice
representation proposed in Section II versus conventional SD,
for 2× 2, 4× 4, and 6× 6 cases using 16-QAM modulation.
For 2 × 2 the proposed algorithm achieves exactly the same
performance as conventional SD, but with much smaller
complexity as shown in Figure 2. However, there is < 1 dB
performance loss in the proposed 4×4 and 6×6 compared to
the conventional. This loss is due to the k-best criteria adoption
at a certain level of the tree as well as applying the quantization
process at the low levels of the tree (refer to [18] for adaptive
k-best and quantization techniques). From Figure 2, it is clear
that the proposed algorithm reduces the complexity by 80%
for the 2 × 2 case, and 50% for both the 4 × 4 and 6 × 6
systems.

We also provide simulation results for the proposed al-
gorithm in Section III. We denote the algorithm by PR
and compare its performance to the performance of optimal
conventional ML detection. Figure 3 shows simulation results
for the transmission of 4 bits/s/Hz with N = 4, M = 1
and 16-QAM using the quasi-orthogonal code defined in (11).
We compare PR with conventional ML detection with and
without rotation. PR achieves full diversity through the rotation
matrix G, while ML achieves it by replacing the transmitted
symbols s3, s4 with s3e

jφ, s4e
jφ in (11) with φ = π/4

(i.e., choosing half of the transmitted symbols from a rotated
constellation set ejφA as discussed earlier) [6]. PR achieves
the same performance as conventional ML, with a substantial
complexity gain.

The complexity is measured in terms of the number of real
multiplications required to decode one block of transmitted
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Fig. 1. BER vs SNR for the proposed and conventional SD over a 2 × 2,
4× 4, and 6× 6 MIMO flat fading channel using 16-QAM modulation.
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Fig. 2. Number of real multiplications vs SNR for the proposed and
conventional SD over a 2 × 2, 4 × 4, and 6 × 6 MIMO flat fading channel
using 16-QAM modulation.

symbols as a function of the constellation size L. A complex
multiplication is equivalent to 4 real multiplications CM and
2 real additions CA, while a complex addition is equivalent
to 2 real additions. The complexity of the decoding algorithm
proposed in [23] is in the order O(LN/4) which is equal to
the complexity of the algorithm presented in [26] and will
be denoted C[23],[26] in the sequel. In Table I, we give a
comparison between ML, algorithms in [23] and [26], and
PR in terms of the number of real multiplications and real
additions considering N = 4 for different constellation sizes.
The number of multiplications and additions shown include
the computation of QR and ȳ = QH ỹ.

Apparently, the complexity gain obtained by PR is sub-
stantial and exceeds 95% compared to conventional ML. It is
important to emphasize the fact that the complexity reduction,
as shown in Table I, becomes greater as N or L is larger.

Finally, we consider the proposed decoding algorithm pre-
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TABLE I
# OF REAL MULTIPLICATIONS AND REAL ADDITIONS VS L USING

QOSTBC WITH N = 4

L 4 16 64 256

ML 1536 24576 393216 6291456
CM [23], [26] 512 2048 8192 32768

PR 432 1104 3792 14544

ML 1376 22016 352256 5636096
CA [23], [26] 432 1728 6912 27648

PR 288 720 2448 9360

sented in Section IV for OSTBC . Table II shows a complexity
comparison for N = 2, M = 1 considering the Alamouti
OSTBC defined in (19). Moreover, in Table III, we show the
same comparison for N = 4, M = 1 using the OSTBC
G4 defined in [27]. We explained in Section IV that the
proposed algorithm provides the optimal ML performance
while reducing the complexity significantly. To verify this
by simulation, we provide simulation results for OSTBCs
employing 2× 1, 4× 1 and 16-QAM in Figure 4. Apparently,
the complexity gain obtained is for free since there is no
performance loss.

TABLE II
# OF REAL MULTIPLICATIONS AND REAL ADDITIONS VS L USING

ALAMOUTI CODE

L 4 16 64 256

CM ML 224 896 3584 14336
PR 80 112 176 304

CA ML 176 704 2816 11264
PR 31 47 79 143
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ML: 4x1
PR: 4x1

Fig. 4. BER vs SNR for PR and conventional ML for 2 × 1, and 4 × 1

systems employing OSTBC and 16-QAM.

TABLE III
# OF REAL MULTIPLICATIONS AND REAL ADDITIONS VS L USING OSTBC

G4

L 4 16 64 256

CM ML 960 3840 15360 61440
PR 248 312 440 696

CA ML 864 3456 13824 55296
PR 159 191 255 383

VI. CONCLUSIONS

In this paper, we discussed three applications of the QR
decomposition algorithm to decoding in MIMO systems. We
proposed a new lattice representation for sphere decoding.
This new structure has the major impact of carrying out the
decoding of the real and imaginary parts of every transmitted
complex symbol independently from each other, thus allowing
for a parallel detection. This, in turn, reduces the number
of computations required at the receiver and consequently
reduces the overall decoding complexity. In the other two
applications, on the other hand, an efficient ML decoding
algorithm based on QR decomposition of the channel matrix
is proposed for quasi-orthogonal space-time block codes and
orthogonal space-time block codes. The performance is shown
to be optimal while reducing the decoding complexity signif-
icantly compared to conventional ML. Furthermore, the pro-
posed algorithm reduces the decoding computational complex-
ity from O(LN/2) for conventional MLD to O(L) for systems
employing QOSTBCs and from O(L) for conventional MLD
to O(

√
L) for those employing OSTBCs, and consequently

the complexity gain becomes grater as the constellation size
is larger.

REFERENCES

[1] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and
H. Bolcskei, “VLSI implementation of MIMO detection using the sphere



decoding algorithm,” IEEE Journal of Solid-State Circuits, vol. 40, pp.
1566–1577, July 2005.

[2] E. Zimmermann, W. Rave, and G. Fettweis, “On the Complexity of
Sphere Decoding,” in Proc. International Symp. on Wireless Pers.
Multimedia Commun., Abano Terme, Italy, Sep. 2004.

[3] U. Fincke and M.Pohst, “Improved Methods for Calculating Vectors of
Short Length in Lattice, Including a Complexity Analysis,” Mathematics
of Computation, vol. 44, pp. 463–471, April 1985.

[4] E. Viterbo and J. Boutros, “A Universal Lattice Code Decoder for Fading
Channels,” IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 1639–1642,
July 1999.

[5] N. Al-Dhahir, C. Fragouli, A. Stamoulis, W. Younis, and A. Calder-
bank, “Space-Time Processing for Broadband Wireless Access,” IEEE
Communications Magazine, vol. 40, pp. 136–142, Sep. 2002.

[6] H. Jafarkhani, “Space-Time Coding: Theory and Practice,” 2005.
[7] ——, “A Quasi-Orthogonal Space-Time Block Code,” IEEE Trans.

Commun., vol. 49, no. 1, pp. 1–4, Jan. 2001.
[8] C. Papadias and G. Foschini, “Capacity-Approaching Space-Time Codes

for Systems Employing Four Transmitter Antennas,” IEEE Trans. Inf.
Theory, vol. 49, pp. 726–732, Mar. 2003.

[9] L. Xian and H. Liu, “Rate-One Space-Time Block Codes with Full
Diversity,” IEEE Trans. Commun., vol. 53, pp. 1986–1990, Dec. 2005.

[10] V. Tarokh, H. Jafarkhani, and A. Calderbank, “Space-Time Block Codes
from Orthogonal Designs,” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp.
1456–1467, Jul. 1999.

[11] N. Sharma and C. Papadias, “Improved Quasi-Orthogonal Codes
Through Constellation Rotation,” IEEE Trans. Commun., vol. 51, no. 3,
pp. 332–335, Mar. 2003.

[12] O. Tirkkonen, “Optimizing Space-Time Block Codes by Constellation
Rotations,” Finish Wireless Communications Workshop (FWWC), pp.
59–60, Oct. 2001.

[13] J.Boutros, E. Viterbo, C. Rastello, and J. Belfiore, “Good Lattice
Constellation for Both Rayleigh Fading and Gaussian Channels,” IEEE
Trans. Inf. Theory, vol. 42, pp. 502–518, Mar. 1996.

[14] J.Boutros and E. Viterbo, “Signal Space Diversity: A Power- and
Bandwidth-Efficient Diversity Technique for the Rayleigh Fading Chan-
nel,” IEEE Trans. Inf. Theory, vol. 44, pp. 1453–1467, Jul. 1998.

[15] W. Su and X. Xia, “Signal Constellations for Quasi-Orthogonal Space-
Time Block Codes With Full Diversity,” IEEE Trans. Inf. Theory, vol. 50,
no. 10, pp. 2331–2347, Oct. 2004.

[16] A. Peng, Kim, and S. Yousefi, “Low-Complexity Sphere Decoding
Algorithm for Quasi-Orthogonal Space-Time Block Codes,” IEEE Trans.
Commun., vol. 54, no. 3, pp. 377–382, Mar. 2006.

[17] S. Alamouti, “A Simple Transmit Diversity Technique for Wireless
Communications,” IEEE J. on Selected Areas in Communications,
vol. 16, pp. 1451–1458, Oct. 1998.

[18] L. Azzam and E. Ayanoglu, “Reduced Complexity Sphere Decoding for
Square QAM via a New Lattice Representation,” IEEE GLOBECOM,
Nov. 2007.

[19] D. Garrett, L. Davis, S. ten Brink, B. Hochwald, and G. Knagge, “Silicon
complexity for maximum likelihood MIMO detection using spherical
decoding,” IEEE Journal of Solid-State Circuits, vol. 39, pp. 1544–1552,
Sep. 2004.

[20] M. O. Damen, H. E. Gamal, and G. Caire, “On Maximum-Likelihood
Detection and the Search For the Closest Lattice Point,” IEEE Trans.
Inf. Theory, vol. 49, pp. 2389–2402, Oct. 2003.

[21] C. P. Schnorr and M. Euchner, “Lattice Basis Reduction: Improved
Practical Algorithms and Solving Subset Sum Problems,” in Math.
Programming, vol. 66, 1994, pp. 181–191.

[22] M. Le, V. Pham, L. Mai, and G. Yoon, “Low-Complexity Maximum-
Likelihood Decoder for Four-Transmit-Antenna Quasi-Othogonal Space-
Time Block Code,” IEEE Trans. Commun., vol. 53, no. 11, pp. 1817–
1821, Nov. 2005.

[23] C. Yuen, Y. Guan, and T. Tjhung, “Quasi-Orthogonal STBC With Min-
imum Decoding Complexity,” IEEE Trans. Wireless Communications,
vol. 4, no. 5, pp. 2089–2094, Sep. 2005.

[24] L. Azzam and E. Ayanoglu, “Maximum Likelihood Detection of Quasi-
Orthogonal Space-Time Block Codes: Analysis and Simplification,” to
appear in IEEE ICC, May 2008.

[25] G. Golub and C. V. Loan, “Matrix Computations,” 3rd Edition, The John
Hopkins University Press, Baltimore, 1996.

[26] H. Lee, J.Cho, J. Kim, and I. Lee, “An Efficient Decoding Algorithm
for STBC with Multi-dimensional Rotated Constellations,” IEEE ICC,
vol. 12, pp. 5558–5563, 2006.

[27] V. Tarokh, H. Jafarkhani, and A. Calderbank, “Space-Time Block
Coding for Wireless Communications: Performance Results,” IEEE J.
on Selected Areas in Communications, vol. 17, pp. 451–460, Mar. 1999.


