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Abstract—Diversity coding is a form of network coding for link
failure recovery in communication networks. Since it employs
coding, there is no feedback signaling, and that feature makes it
very fast. Previously, we have employed this basic technique and
linear programming to come up with fast link failure recovery
systems that also have small extra capacity. One approach,
Diversity Coding Tree, employs mixed integer programming and
results in very fast restoration. Another approach is called Coded
Path Protection, and employs integer linear programming and
has the advantage of small extra capacity. This latter technique is
based on former work that considers a communication network
as consisting of bidirectional links. However, employing coding
on bidirectional links results in larger restoration times than
the former technique. In this paper, we develop an improved
version of our former techniques. This new technique employs
a mixed integer linear programming formulation and results in
restoration times as fast as Diversity Coding Tree with reduced
extra capacity.

I. INTRODUCTION

Incorporating network coding into link failure protection en-
ables proactive protection. This results in much lower restora-
tion time, lower signaling complexity, and higher transmission
integrity compared to the rerouting-based techniques. This is
a form of network coding and it was proposed in [1] and [2],
prior to the first papers on network coding [3]. The technique
is called diversity coding, and in its simplest form, N primary
links are protected using a separate N + 1st protection link
which carries the modulo-2 sum, or XOR combination, of the
data signals in each of the primary links.

In [4], [5], we developed a design algorithm for restoration
via diversity coding in a network with arbitrary topology.
In [4], restoration time advantage of diversity coding was
shown over a path-based restoration technique [6] and p-
cycle protection [7]. P-cycle protection offers fast recovery
by simply employing pre-cross-connected protection cycles.
A comparison of different pre-cross-connected schemes can
be found in [8]. The technique in [9] outperforms p-cycle
protection in both recovery speed and capacity efficiency. The
idea of converting a Shared Path Protection (SPP) [10] solution
to a coding-based solution was introduced in [11] and named
Coded Path Protection (CPP). Simulation results validated the
potential of this idea. In [12], [13], optimal design algorithms
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were developed for provisioning of the static and dynamic
traffic. In [12], it was shown that sub-ms recovery can be
achieved via diversity coding with proper synchronization and
buffering, if connections share the same destination node. In
[14], the basic structure of diversity coding was extended
to incorporate both primary and protection paths in coding
operations, resulting in improvement in capacity efficiency.

In [15], network coding was combined with p-cycle protec-
tion to offer fast recovery from link failures. The technique
is called 1+N protection. It forms circular bidirectional pro-
tection paths to protect a group of bidirectional connection
demands from single link failures. The encoding and decoding
operations are carried out at the end nodes of the connection
demands. The primary paths of the connection demands are
link-disjoint with each other and with the protection cycles.
The term link-disjointness actually refer to span-disjointness.
We prefer the former term since it is more commonly used.

In [16], a new tree-based protection scheme was introduced
and called Generalized 1+N protection (G1+N). When link
transmission is bidirectional, the parity data over the protection
path are produced by summing the primary data in both
directions, symmetrically. This enables decoding of the parity
signals without extra links between the destination nodes and
the decoding node. As a result, G1+N becomes comparable
with SPP in terms of capacity efficiency. Protection of N

parallel unidirectional links via coding is shown in Fig. 1(a)
[1], [2], and protection of N parallel bidirectional links via
coding is shown in Fig. 1(b) [15], [16]. G1+N technique has
higher capacity efficiency compared to the classical diversity
coding scenario. However, it lacks the restoration speed of
diversity coding. In [17], a new trail-based protection scheme
is proposed. Failed data are recovered via a linear coded
protection circuit. This structure is a modified version of the
scheme in [15], resulting in higher capacity efficiency by
moving from cyclic to linear protection topology.

In this paper, the Diversity Coding Tree algorithm is adapted
to implement the general diversity coding structures without
the need of a common destination node. This feature enables
a deeper exploration of the connectivity inside the network,
with the outcome of higher capacity efficiency.
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Fig. 1. Multipoint-to-multipoint architectures with coded protection against
single link failures. (a) Unidirectional network [1], [2], and (b) bidirectional
network [15], [16].

II. CODING STRUCTURE

The general diversity coding structure is shown in Fig. 1(a)
for unidirectional connection demands. It has lower restoration
time and higher spare capacity requirement compared to
the G1+N protection technique shown in Fig. 1(b). G1+N
protection is slower because of two different delays. First, the
distance between the decoding node and the destination nodes
are always higher than half of the propagation delay over the
coding tree. Second, the parity data are transmitted only after
a certain delay until the primary data, transmitted over the
primary path, are received by the destination node. The extra
links between the decoding node and the destination nodes
in Fig. 1(a) makes the unidirectional scheme less capacity
efficient than the bidirectional scheme in Fig. 1(b). In [12],
we introduced the Diversity Coding Tree algorithm for optimal
design of a coding-based protection, employed for links with
a common destination node, resulting in fast restoration. This
algorithm has a simpler coding structure than the one in
Fig. 1(a) since the decoding operations are carried out at the
single destination node. There is no need for feedback links or
a designated decoding node. This coding structure results in
very fast (sub-ms) restoration time. On the other hand, in [11],
we introduced the Coded Path Protection (CPP) algorithm by
optimally converting an SPP structure into a coding structure,
resulting in high network capacity efficiency. This conversion
results in smaller restoration time by eliminating most of the
dynamic operations after the failure. As a side advantage,
this algorithm has low complexity because of primary and
protection paths are already available from the SPP solution.
CPP has competitive capacity efficiency with respect to SPP.
However, both Diversity Coding Tree and CPP have some

potential for improvement. First, Diversity Coding Tree algo-
rithm enforces a limited protection topology with connection
demands going to the same destination node, eliminating
some potentially capacity efficient coding group combinations.
Second, CPP works on very flexible coding structures, but it
lacks the restoration speed due to the bidirectional nature of
the technique. As a result, in this paper, we developed Mixed
Integer Programming (MIP) formulations to map the general
unidirectional diversity coding structure to achieve both high
capacity efficiency and low restoration time. Theoretically, the
increased coding flexibility in the general diversity coding
makes it more capacity efficient than diversity coding with
single destination node. However, increased coding flexibility
incurs increased design complexity which result in an extended
time to reach close to optimal solutions.

As seen in Fig. 1(a), general diversity coding structure
consist of N unidirectional connection demands from Si to Di

for 1 ≤ i ≤ N . Each connection demand has a link-disjoint
primary path carrying data di. Then, the protection tree is the
union of the protection paths that are protected. The protection
tree is also link-disjoint to the primary paths. Each protection
topology has a decoding node where decoding operation is
carried out, which is shown by a big

⊕
sign. In addition

to the protection tree, there is a feedback tree originating
from destination nodes to the decoding node to help with
decoding. The feedback tree overlaps with the protection tree,
but transports data in the reverse direction. In most of the
practical scenarios, the decoding node is very close to the
destination nodes or is one of them. This minimizes the extra
capacity due to the feedback tree. Moreover, the feedback tree
becomes an empty set if there is a single destination node
since decoding is carried out at that node. In the sequel, we
will present the design algorithms to map the general diversity
coding structure over arbitrary networks in the ascending order
of complexity and optimality.

III. ILP FORMULATIONS

In this section, three design algorithms for a general diver-
sity coding approach are presented with varying performance
versus complexity tradeoffs. They are inspired by the “cycle-
exclusion” technique in [18], which helps to achieve a simpler
formulation then the algorithm in [16].

A. Coding Group Formation

The first MIP formulation is the Coding Group Formation
(CGF) algorithm, which is the most basic version of design
algorithms. In this algorithm, both the primary and protec-
tion paths are precalculated. Therefore, the algorithm simply
minimizes the total capacity by optimally combining different
connection demands, whose primary paths are link-disjoint.
Each coding group has a protection tree and a feedback tree.
The protection tree is the union of the protection paths of
the connections in the same coding group. The feedback tree
is the structure that ensures the decoding in a coding group.
The complexity of this algorithm is significantly lower than
the Diversity Coding Tree algorithm in [12] at the expense of
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optimality because the primary and protection paths are pre-
calculated. The MIP formulation has the following parameters

• G(V,E) : Network graph,
• S : The set of spans in the network, a span consists of

two links in opposite directions,
• N : Enumerated list of all unit-demand unidirectional

connections,
• ae : Cost associated with link e,
• T : Maximum number of diversity coding trees allowed,

about half of the number of connections in each subprob-
lem,

• Γi(v) : The set of incoming links of each node v,
• Γo(v) : The set of outgoing links of each node v,
• α : A constant employed in the algorithm, chosen very

small,
• β : A constant employed in the algorithm, chosen very

large,
• t : Diversity coding group index,
• i : Connection demand index,
• si : Source node of the connection demand i,
• di : Destination node of the connection demand i.

In addition to these parameters, in this version, the primary and
protection paths of the connections are precalculated using 2-
shortest link-disjoint paths routing algorithm in [7, p. 196] and
input to the design algorithm as [0, 1] binary parameters. The
additional set of parameters are

• ye(i): Equals 1 iff the protection path of connection i

traverses over span e, is acquired from the shortest path
routing,

• m(i, j): Equals 1 iff the primary path of connection i

is link-disjoint to the primary and protection paths of
connection j, is acquired from the shortest path routing.

Primary paths of the connections are not explicitly required
in this formulation. Instead, the information about their link-
disjointness is necessary and sufficient.

Next we provide the variables. Except the last one, they are
binary and take the value of 0 or 1.

• n(i, t) : Equals 1 iff connection i is protected by the
diversity coding group t,

• ce(t) : Equals 1 iff the protection tree of coding group t

passes through link e,
• sv(t) : Equals 1 iff node v is a decoding node on

protection tree t,
• re(t) : Equals 1 iff the feedback tree of coding group t

passes through link e,
• pv(t) : A continuous variable between 0 and 1, resulting

in an MIP formulation. It keeps the “voltage” value of
node v in the protection tree of t. It is possible to set this
variable as an integer larger than 0 but that makes the
simulation slower.

The first equation guarantees that a connection can be
protected with only one diversity coding group

T∑
t=1

n(i, t) = 1 ∀i ∈ N. (1)

The following inequality makes sure that two connections
can be in the same coding group if and only if the primary path
of connection i is link-disjoint to the primary and protection
paths of connection j and vice versa as

n(i, t) + n(j, t) ≤ 1 +m(i, j),

∀i, j ∈ N, i < j, ∀t.
(2)

n(i, t) + ye(i) ≤ ce(t) + 1,

∀i ∈ N, ∀e ∈ E, ∀t.
(3)

Inequality (3) ensures that link e is a part of the protection
tree of coding group t if the protection path of connection i,
which is in coding group t, passes through e. This inequality
stems from the fact that the protection tree of a coding group
is the union of the protection paths of the connections in the
same coding group.

In inequality (4), the decoding nodes for each coding group
t are identified. Unlike previously, in this formulation, the
number of decoding nodes is unlimited for design purposes.
The aim is to find the unique decoding node which is closest
to the destination nodes to minimize the cost incurred by the
feedback tree. It is also ensured that the root of the feedback
tree is that decoding node. There are two cases to identify
a decoding node. First, the protection tree is split into two
or more outgoing links at a node. Second, the node has an
outgoing link or links of protection tree and it is the destination
node of some connections in the same coding group. The
mathematical expression is

sv(t) ≥
∑

e∈Γo(v)

ce(t) +

∑
i=1,di=v

n(i, t)

β
− 1 ∀v ∈ V, ∀t.

(4)
The following inequalities find the feedback tree to ensure

decodability inside the network. The feedback tree of each
coding group lies in the same span with the protection tree,
but in the opposite direction. This can be expressed by

re(t) ≤ cf (t) ∀e, f ∈ g, e �= f, ∀g ∈ S, ∀t. (5)

Inequalities (6) and (7) dictate the behavior of the feedback
tree both on the decoding nodes and on the non-decoding
nodes, respectively as

∑
e∈Γi(v)

re(t)+1 ≥
∑

e∈Γo(v)

ce(t)+sv(t) ∀v ∈ V, ∀t, (6)

∑
e∈Γi(v)

re(t) + βsv(t) ≥
∑

e∈Γo(v)

ce(t) +

∑
e∈Γo(v)

re(t)

β
− 1

∀v ∈ V, ∀t.

(7)

The reason behind inequality (6) is the requirement of a
feedback link as an input to each decoding node. In inequality
(7), the intermediate nodes link the feedback tree from outgo-
ing links to incoming links in the reverse direction.
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Fig. 2. MIP variables are set for different algorithms. (a) The CGF algorithm,
and (b) the SCP algorithm.

To ensure that protection trees do not include any cyclic
structures, we adopted the “voltage value” concept from [18].
In this formulation, the voltage value at the head node should
be higher than the voltage value at the tail node of the links
which are part of the protection tree.

The mathematical formulation of preventing cycles inside
the protection tree is

pv(t)−pu(t) ≥ α ·ce(t)−(1−ce(t)) ∀e = u→ v, ∀t. (8)

The objective function is

min
∑
e∈E

T∑
t=1

ae × (ce(t) + re(t)). (9)

A typical diversity coding structure matched with MIP
variables is depicted in Fig. 2(a). Thin straight arrows between
source and destination nodes represent the primary paths, as
xe(i) variables are set to 1. Thick straight arrows represent the
protection tree. Therefore, the protection tree variable ce(t) is
set to 1 over the protection tree. The decoding node variable
sv(t) is set to 1 at the decoding node A. The dashed gray
arrows represent the feedback tree between the destination
nodes and the decoding node. The feedback tree variable re(t)
takes the value 1 over the feedback tree.

B. Spare Capacity Placement

The second design algorithm is the Spare Capacity Place-
ment (SCP) algorithm. We have developed an MIP formulation
to find the optimal spare capacity allocation and coding group
combination given the primary paths. The primary paths are
precalculated via the shortest path routing algorithm and
input to the MIP formulation. The SCP algorithm has higher

complexity and higher optimality compared to the algorithm in
the previous section since the protection paths are calculated
jointly with the coding group combination.

The novel approach is to redesign the MIP formulation
without incurring extra variables and constraints on top of the
CGF algorithm described in the previous section. To achieve
that some significant changes are required on the formulation
structure even if the underlying decoding structure is the same.
First, in this formulation, there is only one specific decoding
node, in contrast to the CGF algorithm. Second, the protection
tree is divided into two link-disjoint trees. The tree between
the source nodes and the decoding node is still called the
protection tree. However, the tree between the decoding node
and the destination nodes is combined with the feedback tree.
These structures are shown in Fig. 2(b). The primary paths are
the same as in the CGF algorithm. However, the protection
tree shown by thick straight arrows terminates at the decoding
node. This part of the tree is characterized as if these flows are
destined to the decoding node. The part between the decoding
node and the destination nodes is shown via gray lines. The
thick straight gray arrows are the continuation of the protection
tree. The dashed gray arrows are the feedback links. It is noted
that feedback links and the second part of the protection tree
share the same spans. To simplify the MIP formulation, both
of them are represented with the re(t) variable. The weight of
the re(t) variable is multiplied by 2 since it accounts for two
links at the same time. The re(t) variables are found as if the
decoding node is the source node of the connections, which
are destined to the destination nodes Di’s.

The set of parameters are the same as the CGF algorithm
has except that there are two [0, 1] binary parameters derived
from the shortest path routing of primary paths. The parameter
ye(i) is eliminated and the context of m(i, j) is altered. The
new parameters are

• xe(i): Equals 1 iff the primary path of connection i

traverses over span e, is acquired from the shortest path
routing,

• m(i, j): Equals 1 iff the primary path of connection i

is link-disjoint to the primary path of connection j, is
acquired from the shortest path routing.

The SCP algorithm has the same set of variables as the CGF
algorithm.

Equation (10) and inequality (11) are used in the same
context as stated in the previous section,

T∑
t=1

n(i, t) = 1 ∀i, (10)

pv(t)−pu(t) ≥ α·ce(t)−(1−ce(t)) ∀e = u→ v, ∀t. (11)

Inequality (12) is similar to the one in the previous sec-
tion except m(i, j) keeps the track of link-disjointness only
between the primary paths of connection i and j,

n(i, t) + n(j, t) ≤ 1 +m(i, j),

∀i, j ∈ N, i < j, ∀t.
(12)
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The link-disjointness between the primary paths and the pro-
tection topology in the same coding group is ensured with

xe(i) + xf (i) + ce(t) + cf (t) + re(t) + rf (t) + n(i, t) ≤ 2,

∀e, f ∈ g, ∀g ∈ S, ∀i ∈ N, ∀t.

(13)

Equation (14) ensures that there is only one decoding node
on each coding group,

∑
v∈V

sv(t) = 1 ∀t. (14)

The protection tree of each coding group is found by treating
the decoding node of the coding group as the destination node
of the flows originating from the source nodes. The behavior
of the protection tree depends on the node. The protection tree
must be input to the decoding node using one of the incoming
links. It is stated by

∑
e∈Γi(v)

ce(t) ≥

N∑
i=1

n(i, t)

β
+sv(t)−1 ∀v ∈ V, ∀t. (15)

If node v is a source node then the protection tree must
originate from this node using one of the outgoing links. If
node v is an intermediate node then it must link the incoming
protection tree over one of the outgoing links to the decoding
node. These two statements are combined and ensured with

∑
e∈Γo(v)

ce(t) ≥

N∑
i=1,si=v

n(i, t)

β
+

∑
e∈Γi(v)

ce(t)

β
− sv(t)

∀v ∈ V, ∀t.

(16)

The feedback tree is characterized as the union of the
protection paths of some hypothetical connections. The source
node of these hypothetical connections is the decoding node
and the destination nodes are the same destination nodes of
original connections. There are the same number of hypo-
thetical connections as the original connection demands. The
feedback tree is built by

∑
e∈Γi(v)

re(t) ≥

N∑
i=1,di=v

n(i, t)

β
+

∑
e∈Γo(v)

re(t)

β
− sv(t)

∀v ∈ V, ∀t.

(17)

The objective function is

min
∑
e∈E

T∑
t=1

ae × (ce(t) + 2× re(t)). (18)

The variable re(t) is multiplied by 2 since it accounts for
both the protection tree between the decoding node and

the destination nodes and the feedback tree over the same
topology, but in the reverse direction. This portion is depicted
with two different gray arrows, one straight and one dashed,
in Fig. 2(b).

C. Joint Capacity Placement

The third design algorithm is the Joint Capacity Placement
(JCP) algorithm. It is the optimal design algorithm for general
diversity coding. However, it has higher complexity than the
SCP and the CGF algorithms. Therefore, in this paper, this
algorithm is not incorporated in the simulations due to time
and resource limitations. In this algorithm, the primary paths
are jointly calculated along with coding groups and their
protection topologies. The parameters xe(i) and m(i, j) of
the SCP algorithm are converted to [0, 1] binary variables. The
primary paths are found by

∑
e∈Γi(v)

xe(i)−
∑

e∈Γo(v)

xe(i) =

⎧⎨
⎩

-1 if v = si,

1 if v = di,

0 otherwise,
∀i ∈ N.

(19)
Inequality (20) calculates the variable m(i, j), which is the
link-disjointness between the primary paths, by

xe(i) + xf (i) + xe(j) + xf (j) +m(i, j) ≤ 2

∀e, f ∈ g, ∀g ∈ S, ∀i, j ∈ N, i < j.
(20)

IV. RESULTS

In this section, we report our investigation of the perfor-
mance of the proposed algorithms compared to SPP [10], p-
cycle protection [18], 1 + 1 Automatic Protection Switching
(APS) [7], Diversity Coding Tree algorithm [12], and CPP
[11]. The proposed techniques are potentially more capacity
efficient than the Diversity Coding Tree algorithm since the
coding is not limited to the connections with the same destina-
tion node. However, they incur more design complexity since
new variables are defined to handle the decoding operations.
Higher design complexity implies bigger optimality gap given
the limited computational resources. In these simulations, we
test if the enhancement in the coding structure can overcome
the additional design complexity in the general diversity
coding algorithms.

In order to analyze the performance of the proposed al-
gorithms, we ran simulations on the NSFNET test network
using CPLEX 12.2. This network is depicted in Fig. 3, in
which the numbers next to the nodes are node indices and
the numbers next to the links are the costs (lengths) of using
that link. The main performance metrics are the capacity
efficiency and the worst-case restoration time (RT ). Capacity
efficiency is quantized by calculating the total capacity (TC)
required to route and protect the traffic. The traffic matrix of
the NSFNET network consists of 300 random unit-sized con-
nection demands, which are chosen using a realistic gravity-
based model [19]. In this model, the traffic between two nodes
is proportional to the multiplication of their population. The
design algorithm for SPP is taken from [7, p. 406]. The design
algorithm for p-cycle protection is the optimal cycle-exclusion
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TABLE I
SIMULATION RESULTS OF NSFNET NETWORK

NSFNET Network, 14 nodes, 21 spans

Scheme TC
RT for different X values (ms)
0.5ms 1ms 5ms 10ms

Div. Cod. Tree 1641040 0.03
CPP 1531179 36.96
Div. Cod. CGF 1557400 0.03
Div. Cod. SCP 1542337 0.03
1 + 1 APS 1881880 0.02
SPP 1264865 82.87 83.37 87.37 92.37
p-cycle 1440435 74.41 74.91 78.91 83.91

based ILP for SCP taken from [18]. 1 + 1 APS is calculated
using 2-shortest link-disjoint paths routing algorithm in [7, p.
196].

The variable X represents the optical cross-connect (OXC)
configuration time. The restoration time of the general di-
versity coding schemes can be decreased to sub-ms using
synchronization and buffering as in [12].

The simulation results are given in Table I. As expected,
the proposed algorithms result in higher restoration speed but
lower capacity efficiency than the SPP, the p-cycle protection,
and the CPP algorithms. The difference in terms of capacity
efficiency is not significant compared to the speed advantage of
diversity coding techniques, considering a difference of three
orders of magnitude in restoration time. The outcomes are the
opposite for the 1+ 1 APS. We note that APS will have even
more capacity inefficiency in more populated networks. An
important observation is the fact that the proposed algorithms
have higher capacity efficiency than the Diversity Coding Tree
algorithm. This shows the advantage of coding flexibility.
Moreover, the diversity coding SCP even further results in
higher capacity efficiency than diversity coding CGF since
it optimizes both spare capacity allocation and coding group
formation without introducing any extra complexity on top of
the diversity coding CGF algorithm. As a result, increased
coding flexibility and increased design optimality enables
achieving higher capacity efficiency.

V. CONCLUSION

In this paper, we have developed three MIP formulations
for general diversity coding design algorithms. We know that
these algorithms have increasing optimality and complexity.
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At the same time, they result in very fast restoration as fast
as our former fastest algorithm, Diversity Coding Tree. Our
results confirm our algorithm design. We were able to run
our algorithms on a desktop computing platform although the
design process can take days. As the computational power
of such platforms increase, or by employing a very fast
computing platform, the algorithm will be able to easily
generate solutions for larger networks than we employed in
our simulations. As a future work, heuristic algorithms can
be developed and advanced ILP methods can be used to cope
with the design complexity better.
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