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Linear Precoding for Large MIMO Configurations
and QAM Constellations

Abstract—In this paper, the problem of designing a linear
precoder for Multiple-Input Multiple-Output (MIMO) systems
in conjunction with Quadrature Amplitude Modulation (QAM)
is addressed. First, a novel and efficient methodology to evaluate
the input-output mutual information for a general Multiple-Input
Multiple-Output (MIMO) system as well as its corresponding
gradients is presented, based on the Gauss-Hermite quadrature
rule. Then, the method is exploited in a block coordinate gradient
ascent optimization process to determine the globally optimal
linear precoder with respect to the MIMO input-output mutual
information for QAM systems with relatively moderate MIMO
channel sizes. The proposed methodology is next applied in
conjunction with the complexity-reducing per-group processing
(PGP) technique, which is semi-optimal, to both perfect channel
state information at the transmitter (CSIT) as well as sta-
tistical channel state information (SCSI) scenarios, with high
transmitting and receiving antenna size, and for constellation
size up to M = 64. We show by numerical results that the
precoders developed offer significantly better performance than
the configuration with no precoder, and the maximum diversity
precoder for QAM with constellation sizes M = 16, 32, and 64
and for MIMO channel size 100× 100.

I. INTRODUCTION

The concept of Multiple-Input Multiple-Output (MIMO)
systems still represents a prevailing research direction in
wireless communications due to its ever increasing capabil-
ity to offer higher rate, more efficient communications, as
measured by spectral utilization, and under low transmit-
ting or receiving power. Within MIMO research, BICMB
[1]–[3] has shown great potential for practical application,
due to its excellent diversity gains and its simplicity. For
example, BICMB in conjunction with convolutional coding
offers maximum diversity and maximum spatial multiplexing
simultaneously [1], thus it represents an optimal technique
for this type of Forward Error Correction (FEC). In addition,
there are many past works available which investigated linear
precoding through exploitation of a unitary precoding matrix
with success, mainly from a diversity maximization point of
view [4], [5]. On the other hand, LDPC coding is the currently
prevailing, near-capacity achieving error-correction technique
that operates based on input-output mutual information [6],
[7]. The problem of designing an optimal linear precoder
toward maximizing the mutual information between the input
and output was first considered in [8], [9] where the first
optimal power allocation strategies are presented (e.g., Mer-
cury Waterfilling (MWF)), together with general equations for
the optimal precoder design. In addition, [10] also considered
precoders for mutual information maximization and showed
that the left eigenvectors of the optimal precoder can be set
equal to the right eigenvectors of the channel. Finally, in [11],
a mutual information maximizing precoder for a parallel layer

MIMO detection system is presented reducing the performance
gap between maximum likelihood and parallel layer detection.

Recently, globally optimal linear precoding techniques were
presented [12], [13] for perfect channel state information avail-
able at the transmitter (CSIT)1 scenarios with finite alphabet
inputs, capable of achieving mutual information rates much
higher than the previously presented MWF [8] techniques by
introducing input symbol correlation through a unitary input
transformation matrix in conjunction with channel weight
adjustment (power allocation). Furthermore, more recent work
has shown that when only statistical channel state information
(SCSI)2 is available at the transmitter, in asymptotic conditions
when the number of transmitting and receiving antennas grows
large, but with a constant transmitting to receiving antenna
number ratio, one can design the optimal precoder by looking
at an equivalent constant channel and its corresponding adjust-
ments as per the pertinent theory [16], and applying a modified
expression for the corresponding ergodic mutual information
evaluation over all channel realizations. This development
allows for a precoder optimization under SCSI in a much
easier way [16]. However, existing research in the area does
not provide any results of optimal linear precoders in the
case of QAM with constellation size M ≥ 16, with the
exception of [17]. In past research work, a major impediment
toward developing optimal precoders for QAM has been a
lack of an accurate and efficient technique toward input-output
mutual information evaluation, its gradients, and evaluation of
the input-output minimum mean square error (MMSE) error
covariance matrix, as required by the precoder optimization
algorithm and other algorithms involved, e.g., the equivalent
channel determination in the SCSI case [16].

In this paper, we propose optimal linear precoding tech-
niques for MIMO with LDPC coding, suitable for QAM with
constellation size M ≥ 16. Carrying out this caculation has
been very difficult to do until now due to the complexity
involved in tackling this problem. Our approach entails a
novel application of the Hermite-Gauss quadrature rule [18]
which offers a very accurate and efficient way to evaluate
the capacity of a MIMO system with QAM. We then apply
this technique within the context of a block gradient ascent
method [19] in order to determine the globally optimal linear
precoder for MIMO systems, in a similar fashion to [12], for
systems with CSIT and small antenna size. We show that for
M = 16, 32, and 64 QAM, the optimal linear precoder offers
50% better mutual information than the maximal diversity

1Under CSIT the transmitter has perfect knowledge of the MIMO channel
realization at each transmission.

2SCSI pertains to the case in which the transmitter has knowledge of only
the MIMO channel correlation matrices [14], [15] and the thermal noise
variance.
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precoder (MDP) of [4] and the no precoder case, at low signal-
to-noise ratio (SNR) for a standard 2 × 2 MIMO channel,
however the absolute utilization gain achieved is lower than
1 b/s/Hz. We then proceed to show that significantly higher
gains are available for different channels, e.g., a utilization
gain of 1.30 b/s/Hz at SNR = 10 dB, when M = 16.
We then employ higher antenna configurations, e.g., up to
40 × 40 with CSIT and M = 16, 32, and 64 together with
the complexity reducing technique of per-group processing
(PGP) which was originally presented in [20], and show
very high gains available with reduced system complexity.
Finally, we also employ SCSI scenarios in conjunction with
PGP and show very significant gains for high antennas sizes
and M = 16, 32, 64. Our main advantages compared with
[17] lie over three main directions: a) It offers a globally
optimal precoder solution for each subgroup, instead of a
locally optimal one, b) It is faster, and c) It allows for higher
constellation size, e.g., M = 32, 64 results with ease.

The paper is organized as follows: Section II presents the
system model and problem statement. Then, in Section III, we
present a novel Gauss-Hermite approximation to the evaluation
of the input-output mutual information of a MIMO system that
allows for fast, but otherwise very accurate evaluation of the
input-output mutual information of a MIMO system, and thus
represents a major facilitator toward determining the globally
optimal linear precoder for LDPC MIMO. In Section IV, we
present numerical results for the globally optimal precoder
that implements the Gauss-Hermite approximation in the block
coordinate gradient ascent method. Finally, our conclusions are
presented in Section V.

II. SYSTEM MODEL AND PROBLEM STATEMENT

The Nt transmit antenna, Nr receive antenna MIMO model
is described by the following equation

y = HGx + n, (1)

where y is the Nr×1 received vector, H is the Nr×Nt MIMO
channel matrix, G is the precoder matrix of size Nt×Nt, x is
the Nt × 1 data vector with independent components each of
which is in the QAM constellation of size M , and n represents
the circularly symmetric complex Additive White Gaussian
Noise (AWGN) of size Nr×1, with mean zero and covariance
matrix Kn = σ2

nINr
, where INr

is the Nr×Nr identity matrix,
and σ2 = 1

SNR , SNR being the (coded) symbol signal-to-
noise ratio. In this paper, a number of different channels will
be considered, e.g., channels comprising independent complex
Gaussian components or spatially correlated Kronecker-type
channels [14] (including similar to the 3GPP spatial correlation
model (SCM) ones [21] used in [17]) or [15]. The precoding
matrix G needs to satisfy the following power constraint

tr(GGh) = Nt, (2)

where tr(A), Ah denote the trace and the Hermitian transpose
of matrix A, respectively. An equivalent model called herein
the “virtual” channel is given by [12]

y = ΣHΣGVh
Gx + n, (3)

where ΣH and ΣG are diagonal matrices containing the sin-
gular values of H, G, respectively and VG is the matrix of the
right singular vectors of G. When LDPC is employed in this
MIMO system, the overall utilization in b/s/Hz is determined
by the mutual information between the transmitting branches
x and the receiving ones, y [6], [7]. It is shown [12] that
the mutual information between x and y, I(x;y), is only a
function of W = VGΣ2

HΣ2
GVh

G. The optimal precoder, G is
found by solving:

maximize
G

I(x;y)

subject to tr(GGh) = Nt, (4)

called the “original problem,” and

maximize
VG,ΣG

I(x;y)

subject to tr(Σ2
G) = Nt,

(5)

called the “equivalent problem,” where the reception model
of (3) is employed. The solution to (4) or (5) results in
exponential complexity at both transmitter and receiver, and
it becomes especially difficult for QAM with constellation
size M ≥ 16. A major difficulty in the QAM case stems
from the fact that there are multiple evaluations of I(x;y)
in the block coordinate ascent method employed for deter-
mining the globally optimal precoder. More specifically, for
each block coordinate gradient ascent iteration, there are two
line backtracking searches required [12], which demand one
I(x;y) plus its gradient evaluations per search trial, and
one additional evaluation at the end of a successful search
per backtracking line search. Thus, the need of a fast, but
otherwise very accurate method of calculating I(x;y) and
its gradients prevails as instrumental toward determining the
globally optimal linear precoder for LDPC MIMO.

III. ACCURATE APPROXIMATION TO I(x;y) FOR
MIMO SYSTEMS BASED ON GAUSS-HERMITE

QUADRATURE

In Appendix A we prove that by applying the Gauss-
Hermite quadrature theory for approximating the integral of
a Gaussian function multiplied with an arbitrary real function
f(x), i.e.

F
.
=

∫ +∞

−∞
exp(−x2)f(x)dx, (6)

which is approximated in the Gauss-Hermite approximation
with L weights and nodes as

F ≈
L∑
l=1

c(l)f(vl) = ctf , (7)

with c = [c(1) · · · c(L)]t, {vl}Ll=1, and f = [f(v1) · · · f(vL)]t,
being the vector of the weights, the nodes, and function node
values, respectively (see Appendix A), the following very
accurate approximation is derived for I(x;y) in a MIMO
system, as presented in the following lemma. Let us first
introduce some notations that make the overall understanding
easier. Let ne denote the equivalent to n, real vector of length
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2Nr derived from n by separating its real, imaginary parts as
follows

ne = [nr1 ni1 · · ·nrNr niNr ]
t, (8)

with nrv, niv being the values of the real, imaginary part of
the v (1 ≤ v ≤ Nr) element of n, respectively. Let us also
define the real vector v({krv, kiv}Nr

v=1) of length 2Nr defined
as follows

v({krv, kiv}Nr
v=1) = [vkr1 vki1, · · · , vkrNr

vkiNr
]t, (9)

with krv, kiv (1 ≤ v ≤ Nr) being permutations of indexes
in the set {1, 2, · · · , L}. Then the following lemma is true
concerning the Gauss-Hermite approximation for I(x;y).

Lemma 1. For the MIMO channel model presented in (1),
the Gauss-Hermite approximation for I(x;y) with L nodes
per receiving antenna is given as

I(x;y) ≈ Nt log2(M)− Nr

log(2)
− 1

MNt

MNt∑
k=1

f̂k, (10)

where

f̂k =

(
1

π

)Nr L∑
kr1=1

L∑
ki1=1

· · ·
L∑

krNr=1

L∑
kiNr=1

c(kr1)c(ki1) · · ·

c(krNr )c(kiNr )gk(σnkr1 , σnki1 , · · · , σnkrNr
, σnkiNr

),
(11)

with
gk(σvkr1 , σvki1 , · · · , σvkrNr

, σvkiNr
) (12)

being the value of the function

log2

(∑
m

exp(− 1

σ2
||n−HG(xk − xm)||2)

)
(13)

evaluated at ne = σv({krv, kiv}Nr
v=1).

The proof of this lemma is presented in Appendix A.

IV. GLOBAL OPTIMIZATION OVER G TOWARD
MAXIMUM I(x;y) FOR QAM

A. Description of the Globally Optimal Precoder Method

Similarly to [12], we follow a block coordinate gradient
ascent maximization method to find the solution to the op-
timization problem described in (4), employing the virtual
model of (3). It is proven in [12] that I(x;y) is a concave
function over W and Σ2

G. It thus becomes efficient to employ
two different gradient ascent methods, one for W, and another
one for Σ2

G. We employ Θ and Σ to denote Vh
G and Σ2

G,
respectively, evaluated during the optimization algorithm’s
execution.

There will in general be multiple evaluations of I(·), until
the searches satisfy the conditions set or the maximum number
of attempts allowed in a search has been reached. This ex-
plains the importance behind the requirement for an algorithm
capable of efficient calculation of I(x;y). In addition, as
the parameters α1, α2, β1, β2 need to be optimized for
faster and more efficient execution of the globally optimal

precoder optimization, this requirement becomes even more
essential. Finally, the role of n1, n2 is also very important as
when the number of attempts within each loop grows, the
corresponding differential value of the parameter decreases
and after a few attempts, the corresponding value of the step
size is almost zero. By employing the proposed approach
herein the possibility of finding the globally optimal precoder
for QAM with M ≥ 16 becomes reality, as our results
demonstrate.

B. Determination of ∇WI, ∇Σ2
G
I

We first set M = W
1
2 . Then, it is easy to see that I is a

function of M (see, e.g., [22] where the notion of sufficient
statistic is employed to show that I(x;y) depends on W). The
derivation of ∇WI is presented in Appendix B. The proof is
based on the following theorem3.

Theorem 1. Substituting M = VGΣHΣGVh
G = W

1
2 for

HG in (10) results in the same value of I(x;y). In other
words, since M is a function of H, G, My is a sufficient
statistic for y.

Proof. The proof of the theorem is simple. First, recall that the
“virtual” channel model in (3) is equivalent to the following
model, which results by multiplying (3) by the unitary matrix
VG on the left, resulting in

ỹ = VGy = VGΣHΣGVh
Gx + VGn, (14)

where the modified noise term VGn has the same statistics
with n, because VG is unitary. By applying the Gauss-Hermite
approximation to (14), we see that we get the desired result,
i.e., the value of I remains the same, since both channel
manifestations represent equivalent channels, i.e., the original
one and its equivalent, thus their mutual information is the
same. This completes the proof of the theorem.

Note that using this simple theorem, we can prove easily
part of Theorem 1 in [12], namely the fact that I(x;y) is only
a function of W, as My a sufficient statistic for y and M is
a function of W.

Assume without loss of generality that Nt = Nr. The
gradient of I with respect to M can be found (see Appendix
B for the derivation) from the Gauss-Hermite expression
presented in (10) as follows

∇MI = − 1

log(2)

1

MNt

(
1

π

)Nr L∑
kr1=1

L∑
ki1=1

· · ·
L∑

krNr=1

L∑
kiNr=1

c(kr1)c(ki1) · · · c(krNr )c(kiNr )

×R(σvkr1 , σvki1 , · · · , σvkrNr
, σvkiNr

),
(15)

3The theorem applies without loss of generality to the Nt = Nr case.
If Nt 6= Nr , then ΣH needs to be either shrunk, or extended in size, by
elimination or addition of zeros, respectively.
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where R(σvkr1 , σvki1 , · · · , σvkrNr
, σvkiNr

) is the value of the
Nt ×Nt matrix∑

k

1∑
m exp(− 1

σ2 ||n−M(xk − xm)||2)

×
∑
m

exp(− 1

σ2
||n−M(xk − xm)||2)

× ((n−M(xk − xm))(xk − xm)h

+ ((n−M(xk − xm))(xk − xm)h)h)

(16)

evaluated at ne = σv({krv, kiv}Nr
v=1).

The required ∇WI for the execution of the optimization
process can be found from Appendix B as per the next lemma,
using an easily proven equation. Using the fact that for a
Hermitian matrix such as M, we need to add the Hermitian of
the differential above in order to evaluate the actual gradient
(see [23]), we get the desired result as follows (see Appendix
B).

Lemma 2. For the MIMO channel model presented in (1), the
Gauss-Hermite approximation allows to approximate ∇WI as
follows.

∇WI ≈ reshape((vec(∇MI)T ((M∗)⊗ I + I⊗M)
−1

),

Nt, Nt),
(17)

where reshape(A, k, n) is the reshape of matrix A (with total
number of elements kn) to a matrix with k rows, n columns
and where ⊗ denotes Kronecker product of matrices.

Then, as I is a concave function of W [22], we can
maximize over W in a straightforward way using closed form
expressions. This is based on the fact that the approximated
I through the Gauss-Hermite approximation is very accurate,
as shown in the next section.

Finally, since from [24] we have that ∇Σ2
G
I =

diag(Vh
G∇WIVGΣ2

H), we can easily evaluate it through the
above presented procedure.

V. NUMERICAL RESULTS

The results presented herein employ QAM with 16, 32
or 64 constellation sizes. We employ MIMO systems with
Nt = Nr = 2 when global precoding optimization is per-
formed. We have used an L = 3 Gauss-Hermite approximation
which results in 32Nr total nodes due to MIMO. We apply
the complexity reducing method of PGP [20] which offers
semi-optimal results under exponentially lower transmitter and
receiver complexity [20]. PGP divides the transmitting and
receiving antennas into independent groups, thus achieving a
much simpler detector structure while the precoder search is
also dramatically reduced as well. Finally, we address both
the CSIT and SCSI cases, as they both present significant
application scenarios for 5G.

A. Results for SCSI in conjunction with PGP

In Fig. 7 we present results for PGP versus a no precoding
SCM channel with Nt = Nr = 100 and M = 16. To the

best of our knowledge, results for such high size antenna
configurations were not available in the literature. Similar to
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Fig. 7. Results for PGP and no precoding cases for a 100 × 100 H SCSI
MIMO system and QAM M = 16 modulation.

the previous results, we observe high information rate gains
in the high SNRb regime as the PGP system achieves the
full capacity of 400 b/s/Hz while the no precoding scheme
saturates at 320 b/s/Hz. The PGP system employed uses 50
groups of size 2× 2 each.

B. Results for CSIT in conjunction with PGP

For a 4X4 channel

H =


−2.2536 1.4748 −0.2612 0.0179

0.2824− 0.2468i −0.6570− 0.5204i −0.6028− 0.2290i 0.0201 + 0.0355i
0.7920− 1.7400i 0.4156− 0.3760i −0.1992 + 0.3091i −0.0685 + 0.0110i
1.3780 + 2.2864i 0.5010 + 0.7468i −0.0585 + 0.1318i −0.0081 + 0.0560i

,
used with M = 64 we get the no precoding and the PGP
results using 2 groups of size 2×2 each depicted in Fig. 8. This
example represents the corresponding CSIT case example that
is similar to the SCM channels used in the previous subsection.
We observe very high gains of PGP over the no precoding
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Fig. 8. Results for PGP and no precoding cases for a 4× 4 H CSIT MIMO
system and QAM M = 64 modulation.

case in the high SNRb regime. To the best of our knowledge
this type of results for optimal precoding in conjunction with
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M = 64 were not available in the literature. Finally, in Fig.
9 we present results for an asymmetric randomly generated
MIMO channel with Nt = 4, Nr = 10, and M = 16. PGP
employs 2 groups of size Nr = 5, Nt = 2 each. In the current
scenario, we observe that significant gains are shown in the
low SNRb regime, e.g., around 3 dB in SNRb lower than
−7 dB.
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Fig. 9. Results for PGP and no precoding cases for a randomly generated
10× 4 H CSIT MIMO system and QAM M = 16 modulation.

C. Results for Massive MIMO

Massive MIMO [25]–[27] has attracted much interest re-
cently, due to its potential to offer high data rates with low
signal power. We present results for the uplink, and downlink
of a Massive MIMO system based on 100 base station, 4 user
antennas, respectively, with M = 16, 64, and for a Kronecker-
based 3GPP SCM urban channel in a CSIT scenario. Fig. 10
shows results for the 4×100 uplink of the system. We employ
PGP to dramatically reduce the system complexity at the
transmitter and receiver sites. Under no precoding, the channel
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Fig. 10. Results for PGP and no precoding cases for a randomly generated
100× 4 uplink H CSIT MIMO system and QAM M = 16 modulation.

saturates and fails to meet the maximum possible mutual
information of 16 b/s/Hz, while with PGP the system clearly

achieves the maximum mutual information rate, thus achieving
high gains on the uplink in the high SNR regime. We stress
the much higher throughput possible with M = 64 over the
M = 16 case. For example, the no precoding M = 16 uplink
significantly outperforms the PGP M = 16 uplink. Second, the
PGP M = 6 uplink offers further gains by, e.g., achieving the
maximum possible rate of 24 b/s/Hz. For the downlink, in
Fig. 11 we show results where the no precoding case operates
under 100 antenna inputs all correlated through the right
eigenvectors of the channel, thus creating a very demanding
environment at the user, due to the exponentially increasing
maximum a posteriori (MAP) detector complexity [20]. On
the other hand, employing PGP with only two input symbols
per receiving antenna, i.e., with dramatically reduced decoding
complexity, the PGP system achieves much higher throughput
in the lower SNR regime, with SNR gain on the order of
10 dB, albeit achieving a maximum of 32, 48 b/s/Hz as there
are a total of 8 M = 16, 64 QAM data symbols employed,
respectively. We observe the superior performance of M = 64
over its M = 16 counterpart due to its increased constellation
size. For example, at medium SNRb, e.g., SNRb = 4, the
M = 64 PGP scheme achieves 45% higher throughput that
the M = 16 one, a significant improvement. We also like
to emphasize that the no precoding scheme requires a very
high exponential MAP detector complexity, on the order of
M100, while for the low-SNR-superior PGP, this complexity
is on the order of M2 only. Thus, even in the higher SNR
region where the no precoding scheme can achieve a higher
throughput, the complexity required at the user site becomes
prohibitive. This demonstrates the superiority of PGP on the
Massive MIMO downlink. On the other hand, in lower SNR,
the PGP scheme achieves both much higher throughput with
simultaneously exponentially lower MAP detector complexity
at the user site detector.
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Fig. 11. Results for PGP and no precoding cases for a randomly generated
4× 100 H downlink CSIT MIMO system and QAM M = 16 modulation.

VI. CONCLUSIONS
In this paper, the problem of designing a linear precoder for

MIMO systems employing, e.g., LDPC codes toward mutual
information maximization is addressed for QAM with M ≥ 16
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and in conjunction with high MIMO system size. A major
obstacle toward this goal is a lack of efficient techniques for
evaluating I(x,y) and its derivatives. We have presented a
novel solution to this problem based on the Gauss-Hermite
quadrature. I(x;y) = Nt log2(M) at high SNR. Furthermore,
we apply the same Gauss-Hermite approximation approach
to CSIT high antenna size channels with the same success.
We show that for specific type of channels similar to urban
3GPP SCM [21], the PGP approach offers very high gains over
the no precoding case in the high SNRb regime. Finally, we
consider a Massive MIMO scenario in conjunction with CSIT
and show that by carefully designing the downlink, uplink
precoders, the methodology shows very high gains, especially
on the downlink, although it employs an expenentially simpler
MAP detector at the user site.

Based on the evidence presented, the novel application of
the Gauss-Hermite quadrature rule in the MIMO scenario
allows for generalizing the interesting results presented in [12],
[16] to the QAM case with ease. Because of the simplification
achieved by the combination of PGP and the Gauss-Hermite
approximation, we were able to derive results with, e.g.,
Nt = Nr = 100 as well as with M = 64 efficiently.
The novel combination of the Gauss-Hermite approximation
with PGP allows for application of optimized procoding to
5G oriented massive MIMO systems with ease. In addition,
the presented Gauss-Hermite approximation offers important
simplification in the evaluation of the MMSE error covariance
matrix of the MIMO channel which is required in, among
other areas, the SCSI equivalent channel determination as per
[16]. Finally, compared with other interesting proposals for
large MIMO sizes, e.g., [17], which also employs PGP, the
presented approach has the following advantages: a) It offers
a globally optimal precoder solution for each subgroup, instead
of a locally optimal one, b) It is faster, and c) It allows for
higher constellation size, e.g., M = 32, 64 results with ease,
thus it seems to be more efficient in these regards.

APPENDIX A
GAUSS-HERMITE QUADRATURE APPROXIMATION IN

MIMO INPUT OUTPUT MUTUAL INFORMATION

I(x;y) = H(x)−H(x|y) = Nt log2(M)−H(x|y), where
the conditional entropy, H(x|y) can be written as [12]

H(x|y) = Nr

log(2)
+

1

MNt

∑
k

En

(
log2

(∑
m

exp(− 1

σ2
||n−HG(xk − xm)||2)

))
=

Nr

log(2)
+

1

MNt

∑
k

∫ +∞

−∞
Nc(n|0, σ2I)

× log2

(∑
m

exp(− 1

σ2
||n−HG(xk − xm)||2)

)
dn,

(18)

whereNc(n|0, σ2I) represents the probability density function
(pdf) of the circularly symmetric complex AWGN. Let us

define

fk
.
=

∫ +∞

−∞
Nc(n|0, σ2I)×

log2

(∑
xm

exp(− 1

σ2
||n−HG(xk − xm)||2)

)
dn.

(19)

Since n has independent components over the different receiv-
ing antennas, and over the real and imaginary dimensions, the
integral above can be partitioned into 2Nr real integrals in
tandem, in the following manner: Define by nrv, niv , with v =
1, · · · , Nr, the vth receiving antenna real and imaginary noise
component, respectively. Also define by (HG(xk − xm))rv
and (HG(xk − xm))iv , the vth receiving antenna real and
imaginary component of (HG(xk − xm)), respectively. We
then have

Nc(n|0, σ2I) =
1

πNrσ2Nr
exp(−

∑
l n

2
rv + n2iv
σ2

), (20)

dn =

Nr∏
v=1

dnrvdniv, (21)

and∑
m

exp(− 1

σ2
||n−HG(xk − xm)||2)

=
∑
m

exp(− 1

σ2
(
∑
v

(nrv − (HG(xk − xm))rv)
2

+
∑
v

(niv − (HG(xk − xm))iv)
2)).

(22)

The Gauss-Hermite quadrature is as follows:∫ +∞

−∞
exp(−x2)f(x)dx ≈

L∑
l=1

c(l)f(vl), (23)

for any real function f(x), and with vector c =
[c(1) · · · c(L)]T being the “weights,” and vl are the “nodes”
of the approximation. The approximation is based on the
following weights and nodes [18]

c(l) =
2L−1L!

√
2π

L2(HL−1(vl))2
(24)

where HL−1(x) = (−1)L−1 exp(x2) d
L−1

dxL−1 (exp(−x2)) is the
(L − 1)th order Hermitian polynomial, and the value of the
node vl equals the root of HL(x) for l = 1, 2, · · · , L.

Applying the Gauss-Hermite quadrature 2Nr times in tan-
dem, to the integral in (19), and after changing variables, we
get that

fk ≈ f̂k =

(
1

π

)Nr L∑
kr1=1

L∑
ki1=1

· · ·
L∑

krNr=1

L∑
kiNr=1

c(kr1)c(ki1)

· · · × c(krNr )c(kiNr )gk(σnkr1 , σnki1 , · · · , σnkrNr
, σnkiNr

),
(25)

where
gk(σnkr1 , σnki1 , · · · , σnkrNr

, σnkiNr
) (26)
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is the value of the function (from (25))

log2

(∑
m

exp(− 1

σ2
||n−HG(xk − xm)||2)

)
(27)

evaluated at ne = σv({krv, kiv}Nr
v=1).

APPENDIX B
DERIVATION OF ∇WI THROUGH THE GAUSS-HERMITE

APPROXIMATION

Without loss of generality, let’s assume that Nt = Nr.
Using Theorem 1, we can write by using the Gauss-Hermite
approximation with M instead of HG,

I(x;y) ≈ Nt log2(M)− Nr
log(2)

− 1

MNt

∑
k

f̂k. (28)

In order to derive the gradient of I with respect to W, we
first derive the gradient of I with respect to M. Start with the
differential of I with respect to M∗ in (28) and approximate
the fk by f̂k, to get for the differential of I(x;y) over M∗.
The full details can be found in [28], but are omitted from here,
due to lack of space. We can then employ identities from [23]
to get the desired result.
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