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Abstract

We find the degrees of freedom of a network withsource nodesR relay nodes and destination nodes, with
random time-varying/frequency-selective channel cdefiiis and global channel knowledge at all nodes. We allow
full-duplex operation at all nodes, as well as causal nfrisefeedback of all received signals to all source and relay
nodes. An outer bound to the capacity region of this netwsrlitained. Combining the outer bound with previous
interference alignment based achievability results, weckmle that the techniques of relays, feedback, full-duple
operation and noisy co-operation do not increase the degfefeeedom of interference and networks. As a second
contribution, we show that for a network withi full duplex nodes and< (K — 1) independent messages with one
message from every node to each of the otRer 1 nodes, the total degrees of freedom are bounded above and

below by 1((2(?:21)) and £} respectively.
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|I. INTRODUCTION

The recent surge of interest in approximate capacity cheriaations of wireless networks has lead to substantial
progress on several long standing open problems. The ¢tapHatertain relay networks have been characterized
within a constant number of bits [1]. In their seminal paggtkin, Tse and Wang [2] found the capacity region
of the 2 user interference channel within one bit. The sum capadithe® K -user time-varying/frequency-selective
interference channel (see Figure 1) was approximated iag3]

C(SNR) = glog(SNR) + o(log(SNR)) 1)

where SNR represents the signal to noise ratio (the totastn& power of all nodes when the local noise power at
each receiver is normalized to unity). Equivalently, fiieuser interference channel ha§/2 degrees of freedom
Since, by definition, at high SNR thglog(SNR)) term is a vanishing fraction dbg(SNR), the accuracy of such a
capacity characterization approaci@8% as the SNR approaches infinity. The achievable scheme faraacity
characterization of interference networks is based ondka of interference alignment [3].

The interference alignment technique of [3] has been gémedain [4] to find a capacity approximation of
wireless X networks withino(log(SNR)). X networks are a generalization of interference networkslikeran
interference network where each transmitter has a messagmly its corresponding receiver, in ai network
every transmitter has an independent message for everyeedeeference [4] studied the frequency-selectiveD
X network (Figure 1), i.e., a network withi transmitters,D receivers and' D independent messages - one message
for each transmitter-receiver pair. Using an interferealignment based achievable scheme, [4] characterized the
sum capacity of theS x D X network as

SD
Equivalently, the frequency selectivex D X network has% degrees of freedom.

The degrees of freedom characterizations shed light onabe ¢f capacity due to the distributed nature of a
network. Note that a total ofnin(S, D) degrees of freedom can be achieved in a network Witlransmitters
and D receivers by full cooperation among source nodes as in avbobadcast channel [5]-[7], full cooperation
among destination nodes as in a vector multiple access ehf8inor both as in a x D point to point multiple
input multiple output (MIMO) channel [9]. Neither the inference network considered in [3] nor thé network
considered in [4] allow any mechanism for the source nodesdperate among themselves by learning each other’s

messages or for the destination nodes to cooperate amomgehes by sharing their received signals. The price

— _SD
S+D-1

guestion that follows from this observation is whether sahéhese lost degrees of freedom can be recovered by
other means - e.g. by allowing source nodes (as well as déistinnodes) to communicate among themselves, by

paid for the distributed nature of the network is the losardfi(.S, D) degrees of freedom. A natural

employing relay nodes, by allowing feedback from the desiim nodes to source nodes, or even by allowing full
duplex operation so that all nodes can transmit and recémeltaneously. In this work we seek to answer these
guestions for wirelesX networks.

Previous work in this direction [10] obtained a degrees eéfftom outerbound d& /2 for the K user interference
network with relays and noisy transmitter/receiver corafien. Since the results of [3] show that/2 degrees of

Lif the sum capacity of a network is characterizedSNR) = dlog(SNR) + o(log(SNR)), then we say that the network hdsdegrees
of freedom (also known as multiplexing gain or capacity -
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Fig. 1. Interference anX channels

freedom can be achieved even without relays and cooperaltierconclusion is that relays and transmitter/receiver
cooperation cannot increase the degrees of freedom ofdreguselective interference networks. In this paper, we
seek a generalization of the results of [10]Xonetworks.

There are two main results in this work. First, we show thatwWoeless networks with a set ¢f source nodes
and a disjoint set ofD destination nodes and time-varying/frequency-seleathannel coefficients, the available
degrees of freedormannot be increased by allowing source nodes and/or destination nodes to contatmamong
themselves over physical channels, or by allowing relagadiback to source/relay nodes and full duplex operation.
Thus, the total degrees of freedom of a wireless network wisource and) destination nodes remailgé..fl’):’—71 with
or without cooperation, relays, feedback and full duplerragtion. Note that the network considered is essentially
an X network with relays, feedback, full-duplex operation aradsg co-operation. Thus the achievabiliﬁfDD—_1
degrees of freedom without relays, feedback, full duplegrafion and cooperation follows trivially from [4]. The
main contribution of this paper is the converse (outerbyumdved in Theorem 1 of Section Ill. It states that even
with relays, feedback, cooperation and full duplex operatii is not possible to achieve more thg@gDD—_l degrees
of freedom. The converse is applicable even if feedbackiifepg and/or relays have multiple antennas. While the
main result implies that the techniques of relays, feedphtkduplex operation and co-operation cannot improve
the degrees of freedom of networks, we also show that these techniques cannot imptegeces of freedom
of fully connected wireless interference networks (seeollany 2). Generalizations of the outerbound to networks
that are not fully connected and other interesting obsiEmsatrelated to the result can be found in Section 11I-C.

The results of Theorem 1 and its corollaries are limited tbwneks where source nodes are disjoint from
destination nodes, i.e., they are applicable to networksrahif a node is a source node for a message, then it
cannot be the destination node for any message in the net{@ork vice versa). A second contribution of this
work is to extend to converse of Theorem 1 and the interferalignment based achievable scheme of [3] to
networks where every node can behave as both a source forreessage and a destination for another message.
The most general case is where every node may have an indagendssage for every other node. For this case,
we show that for a network witti full duplex nodes and< (K — 1) independent messages with one message



from every node to each of the oth&r — 1 nodes, the total degrees of freedom are bounded above ama bél
K(K-1)/(2K —2)and K(K —1)/(2K — 3) respectively.

Il. SYSTEM MODEL FOR ANS x R x D NODE X NETWORK

Consider anS x R x D node network, i.e., a network witlf + R + D nodes where nodek 2,--- ,S are
sources, node$ + 1,5 + 2,---,5 + R are relays, and nodeS + R+ 1, S+ R+ 2,---,S+ R+ D are
destination nodes (see Figure 2). Following the definitibam X network [4], for allj € {1,2,---,5} and for
alie {S+R+1,S+R+2,---,S+ R+ D}, there is an independent messagg; to be communicated from
source nodg to destination node.

Full duplex operation is assumed so that all nodes are caditittansmitting and receiving simultaneously. The

input and output signals of th& x R x D node network are related as:
S+R+D
Yiin) = Y Hij(n)X;(n)+Zin), i€{l,2,---,S+R+D}neN (3)
j=1
where, corresponding to theé” use of the channel\;(n) is the symbol transmitted by nogeY;(n) is the symbol
received by node, H; ;(n) is the channel gain from nodgto node: and Z;(n) is the zero mean unit variance

additive white Gaussian noise (AWGN) at nodéNe use the following notation,

Similar notation is used for output signals and the additivese terms as well.

The channel coefficient®; ;(n), Vi,j € {1,2,---,5 + D + R} are knownapriori? to all nodes. All channel
coefficients take non-zero values and the network is fullgrected. The AWGN termg;(n) have unit variance
and are independent identically distributed (i.i.d.) imei and across nodes.

Perfect (noise-free) and causal feedback of all receivgbds is available to all source and relay nodes, but not
to the destination nodes. For codewords span@Vnghannel uses, the encoding functions are as follows,

fin (WS+R+1,i,WS+R+2,i, e ,W5+R+D,i,Y1"_1,Y2”_1, . ,Y§‘;§+D) , ie{1,2,---,5}
Xi(n)=q fin (VLY YR D) i€{S+1,542,---,5+R}
fin (Y"71), ic{S+R+1,---,S+R+D}
forn=1,2,---, N. In other words, the signal transmitted from a source nodaregn is completely determined

by all the messages originating at that source node and tteveel signals ofall the nodes upto time, — 1
(causality condition). The signal transmitted by a desiimanode at timen can only depend on all the received
signals atthat node upto timer — 1. This is because the destination nodes do not receive fekdifather nodes’
received signals. The signal transmitted from a relay naheanly depend on the received signalsabfthe nodes
upto timen — 1.

The decoding functions are as follows,

Wij = gi; ¥N),ie{S+R+1,S+R+2,--- ,S+R+D},je{l,2,---,5}

Thus, a destination node can only use its own received stgndécode all its desired messages. The probability
of error is the probability that there is at least one mess&ge that is not decoded correctly, i.é./l-_,j # W, ; for
some(i, j).

2Thus, we also show that non-causal channel knowledge ddesatease the degrees of freedom.



Perfect Feedbac 5

NodeS + R+ D

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

S distributed sources R relays D distributed destinations

Fig. 2. TheS x R x D network

The total power across all transmitters is assumed to be SMRhannel use. We denote the size of the message
set by|W, ;(SNR)|. Let R; ;(SNR) = w denote the rate of the codeword encoding the mesBage
where the codewords spay slots. A rate-matrifR; ;(SNR))] is said to beachievable if messagedV; ; can be
encoded at rate®; ;(SNR) so that the probability of error can be made arbitrarily $rsahultaneously for all
messages by choosing appropriately Ia¥g

Let C(SNR) represent the capacity region of tltex R x D node network, i.e., it represents the set of all
achievable rate-matricd$R; ;(SNR))]. Analogous to the capacity region, the degrees of freedaiomeof the
S x R x D node network is defined as

D= {[(dz‘,j)] € R} : V[(aiy)] € RSP

S+R+D S S+R+D S 1
Z Z ai,jdi,j S lim sup sup Z Z (ai,jRi,j (SNR)) — }
i=S+R+1 j=1 SNR-oo |[(Ri,;(SNR)]eC(SNR) j=sF R+1 j=1 log(SNR)

Note that the above equation means that in a capacity optinfaévable scheme, the achieved r&tg (SNR)
can be approximated a% ; log(SNR) + o(log(SNR)). Equivalently, the degrees of freedom region of a network
approximates its capacity region withirilog(SNR)).

Ill. DEGREES OFFREEDOM OF THES x R x D NODE X NETWORK
Theorem 1: Let

pout 2 {[(dm»)] V(u,v) €{1,2---S} x{S+R+1,S+R+2,---,S+ R+ D}

S+R+D

S
S dgut Y dop—dou <1 }
p=1

q=S+R+1



Feedback 6

W31,Wan

=0 Wa1, Wao
Wiy, ‘

Feedback

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 3. 4 node X network

ThenD C D°“ whereD represents the degrees of freedom region ofgheR x D nodeX network. Furthermore,
the total number of degrees of freedom of thex R x D network can be upperbounded as follows
S S+R+D

m SD
di D e,
[(di,jé)l]XGD Z ) Z »J = g 1
Jj=1i=S+R+1 +D -

Equivalently, the sum capacity(SNR) of this network can be bounded as

C(SNR) < % log(SNR) + o(log(SNR))
The proof of the above theorem can be divided into two stalgethe first stage, we first construct4anode
MIMO X network whose capacity is larger than the capacity of thgimai S x R x D network. In the second
stage, we upperbound the capacity of thisode X network using Fano’s inequality. We now proceed to the proof

A. First Stage of Proof - Construction of a 4 node X network

To prove the theorem, all we need to show is that for @ny) € {1,2,...,S} x{S+R+1,S+R+2,...,5+

R+ D
} S+R+D s

Z di,u + dv,j - du,u S 1
i=S+R+1 Jj=1

We therefore need to show that for all messages that eithginate at nodeu or are intended for node, the
total number of degrees of freedom cannot be more than omamshg all inequalities of the above form over all
(u,v) €{1,2,...5} x {S+R+1...54 R+ D}, the bound on théotal number of degrees of freedom can be
obtained.

For convenience, we will show the inequality far, v) = (1, S + R+ D). By symmetry, the inequality extends
to all desired values ofi, v. We therefore intend to show that

S+R+D S

> dian+Y dsirip; —dsiripa <1
i=S+R+1 j=1



To show this, we first eliminate all the messages that are ssxcé@ated with either source nodeor destinati(;n
nodeS+ R+ D, i.e.,, we setW, ; = ¢, (i — (S+ R+ D)) (j — 1) # 0. Since we are only seeking an outerbound
on the rates of a subset of messages, eliminating a messag®thurt the rates of the remaining messages [11].
Now, we transform the origina$ x R x D network with single antenna nodes int@ & 0 x 2 node network, i.e.,
an X network with2 source nodes, zero relay nodes @ndestination nodes where one source and one destination
have multiple antennas (see Figure 3). This is done by aligwill cooperation between thg — 1 source nodes
2,---,5 and theR relay nodesS + 1,5 + 2,---,S + R so that they effectively become one transmitter with
S + R — 1 antennas. Similarly, destination nodgs+t R + 1,5+ R+2,---,S+ R+ D — 1 are also allowed to
perfectly cooperate so that they form one receiver with- 1 antennas. Again, note that allowing the nodes to
cooperate cannot reduce the degrees of freedom region arefdle does not contradict our outerbound argument.
We represent the resultingnode X network (Figure 3) by the following input-output equations

Yin) = Zﬁiyj(n)yj(n)JrZ(n), ie{1,2,3,4} (5)
where

?1(71) = Yl(n)

Yan) = [Ya(n) Ys(n) --- Ysir(n)]”

Y3(n) = [Yssrt1(n) Ysirso(n) -+ Ysyrep_1(n)]”

Yi(n) = Ysirip(n)

Thus, node® and3 act as multiple antenna nodes wish+- R — 1 and D — 1 antennas respectively(;(n), Z;(n)

are also defined in a corresponding mannerifar{1,2,3,4}. The definition of the channel coefficients; ;(n)

is clear from equations (3) and (5), and from Figures 2 and G@ltiMe messages that have the same source and
the same destination are combined in theode X network as follows:

Ws1 = [Wsirt11 Wsiri21 -+ Wsirip—11] (6)
Wsa = ¢ (7)
Wa1 = Wsirina (8)
Wi = [Wsirip2 Wsirins -+ Wsirin.s] 9)

Over this X network, the encoding functions are as follows:

Xin) = T (Wor, War V77075075707 (10)
o) = Fou (W2 Vi Vs V3 VG ) (12)
Xi(n) = Tzn (7?71) ,t=23,4 (12)
and the decoding functions are the following:
Wi = 3.5 (V1 )(0,3) € {(3,1), (4,1), (4,2)) (13)

The rates and the degrees of freedom region of this netwaldafined in a manner similar to thtex R x D
network. This completes the construction of theode X network.



B. Second stage of Proof - Capacity bound on the 4 node X network

As discussed above, we intend to show
S+R+D s

> din+Y dsirip; —dsiripa <1
i=S+1+R j=1

Using equation (6)-(9), we can re-write the above outerboimnterms of degrees of freedom of the 4 nadle
network as
d3q+dig+dia<1 (14)

whered; ; represents the number of degrees of freedom correspondlingessagél; ;. Therefore, to complete
the proof, we need to show (14).

The converse argument is as follows. Consider any achiewatiding scheme in thé node X network. Let a
genie provide the messag88, 1, W4 o and??,?f to node3, where the codewords spav symbols. Next we
find outerbounds on the rates in the genie suppottadde X network. Using Fano’s inequality, for aryy > 0,
we can bound the rates of messages corresponding to recgiaed 4 as follows.

N (R4,1(SNR) + R4 2(SNR) + R31(SNR) — ex)
< I(W4,1,W4,2;71V) + I(W3,1;W4,17W4,2a7é,v77§[77f) (15)
< I Wi, Wan; Va )+ I(Wa1;Va Yy, Vy [Wa, W) (16)
<Sh(TY) = WYL Wan, W)+ h(V3 V5 V3 (War, Wa) = h(V3 V3 V3 [War, Wa2, War)  (17)
< N (log SNR+ 0 (log SNR) + h(V3 , V3 [V W1, W) = (Vs Vs V) [Wa i, Wao, Wan)  (18)
T T
In (16), we have used the fact thlf, ;, W, » are independent ofi’; ;. To obtain (18) from (17), we have used

the fact that Gaussian variables maximize entropy for tis¢ trm of (17) and the chain rule to combine the second
and the third terms of (17). We now simplif§}, 7> as follows.

—N —NoN— — —
T = h(Yy,Y3 Y, [Ws1,War1, Wap) (19)
N
<~ - - — = — —n—1 n—1 —n—1
= Z h(Y2 (n)7 Y3 (n)7 Y4(7’L)|W3717 W4,la W4,27 Y2 ) Y3 ) Y4 ) (20)
n=1
T o = = = = ol on-l ol — | — | — . —
> Y h(Ya(n),Ys(n),Ya(n)[Way, War, Wa2, Yy Y5 Y, X1(n),Xa(n), Xs(n), X4(r(21)
n=1
S — — = —n-1 1 1 -
= Zh(Zg(n),Z3(n) Zam)W31, War1,Wap, Yy Yy Yy, X1(n), Xa(n), X3(n), X4(n(32)
n=1
N p— p— p—
= Y W(Zs(n), Zs(n), Za(n)) (23)
n=1
=T, > NO®) (24)

In (21), we have used the fact that, conditioning reducesopnt In (22), we have used the fact that nodes have
global channel knowledge and therefore, the effecKefn),i = 1,2,3, 4 can be canceled frof;(n),j = 2,3, 4.
In (23), we have used the independence of the noise termsnaiady:, and the inputsX;(n), 1,2, 3, 4, outputs

—n—1

Y’

2

;i =1,2,3,4 and messaged/s 1, W41, Wy.
—N =Nz == =N
T, = h(Yy,Yq |[Wa1,Wyeo,Y,) (25)
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= zjjjlh<?2<n>,?3<n>|W4,1,W4,2,?ff SERREE (26)
= zjjjlh<?2<n>,?3<n>|W4,1,W4,2,?f Y5 YS T Xa(n), Xa(n), Xa(n)) (27)
< ih(ﬂmxmm+72<n>,F3171<n>+72<n>|ﬁ4171<n>+74<n>> (28)
< ZN: h(H21X1(n) + Za(n)[Hyn X1(n) + Za(n)) + h(Hs1X1(n) + Za(n)[Hun X1(n) + Z4(n)) (29)
< ?\i(log(SNR)) (30)

(27) follows because, giveWM,W4,2,7iv,7§_1,7;_1, the node has information of;(n),i = 2, 3,4 because

of encoding functions (10)-(12). In (28), we have canceleal ¢ffect of Xo(n), X3(n), X4(n), from Y;(n),i =
2,3,4, and then used the fact that conditioning reduces entr80y.dan be shown using the fact that the Gaussian
distribution maximizes conditional entropy, similar torhmal in [12]. Therefore, using (24), (30) in (17) we can
write

R31(SNR) + R4 1(SNR) + R4 2(SNR) — 2¢e5y < log(SNR) + o(log(SNR)) (31)

This implies that the total number of degrees of freedom efdtmode X network described is upper-bounded by
1 so that we can write

maxds 1 +dao +das <1
DX

[ |
Corollary 1: Consider the fully connected x R x D network where all the channel coefficients are time-
varying/frequency-selective with values drawn randomiyrf a continuous distribution with support bounded below

by a non-zero constant. Then, the capacity of the networkbmapproximated as

C(SNR) = % log(SNR) + o(log(SNR)

Proof: The converse follows from Theorem 1. Achievability simpbtléws from the interference alignment

based achievable scheme of [4] over thechannel formed by thé source nodes anfd destination nodes. W
Corollary 2: Consider a fully connectedl user interference network witl® relays, where all the channel
coefficients are time-varying/frequency-selective witdiues drawn randomly from a continuous distribution with

support bounded below by a non-zero constant. Let all noddalbduplex allowing noisy transmitter/receiver co-
operation. Also, let the source and relay nodes receivegeidéedback from all other nodes. Then, this interference
network has% degrees of freedom.

Proof: Achievability follows trivially from [3]. The converse ish®wn here. Now, note that the network
considered is essentially th€ x R x K network with certain messages set to null. In tiex R x K network
nodesl,2... K are the source node#& + 1,... K + R are relay nodes and the nod&s+ R+ 1...2K + R
are destination nodes. There are oAlymessages in the network will; ; = ¢, # (j + R + K). Now, writing
bounds of Theorem 1 for the non-null messages, we get

du+R+K,u +dv+R+K,v < 1,’LL 7& v, U,V € {1127 . K}

Summing all bounds of the above form, the total number of elegiof freedom can be bounded Ry2. |



C. Observations

1)

2)

3)

4)

10

The achievable schemes in Corollary 1 and Corollary 2 daise relays, feedback or co-operation. Therefore,
the implication of the result is that relays, feedback,-fluplex operation and noisy co-operation do not
improve the degrees of freedom of frequency-selectivefertence andX networks.

The outerbound of Theorem 1 applies to fully connecte@less networks that are not necessarily frequency-
selective or time-varying. Furthermore, the outerboundadBd even if nodes do not have global channel
knowledge. This is because global channel knowledge canincilease the capacity of a network and therefore,
the outerbound still holds. For similar reasons, the owtenld is valid if the feedback channel is noisy, i.e.
not perfect. The frequency-selective/time-varying natirthe channel and global channel knowledge are only
required for the achievable schemes used in the corollafiéise theorem.

The bounds of Theorem 1 are applicable even if some or Bysehave multiple antennas. This is because
the converse starts by allowing full co-operation betweknmeday nodes to effectively form a MIMO relay
node. Further, the outerbound is independent on the nunfbemtennas in this effective MIMO relay node.
Therefore, the converse argument stands even if certaialljorelays have multiple antennas.

Note that the second stage of the proof of Theorem 1 is alih if the 4 nodeX network is not fully
connected as long a4 ; is non-zero. IfH, ; is equal to zero, the argument fails because the upper-bound
of o(log(SNR)) in (30) is no longer valid. All other inequalities hold fortétrary channel co-efficients. This
implies that the converse technique of Theorem 1 can alscsbd to bound the degrees of freedom regions
of networks that are not fully connected. For example, Bra0 x 3 network where the channel gain between
source nodd and destination nodé is zero and all other channel gains are non-zero, we can write

S+R+D S
E: dmu*‘E:C%p'_dmufgl
q=S+R+1 p=1

where(u,v) € {1,2,3} x {4,5,6}\{(1,6)} with \ used to indicate the difference between two sets. Note that
although the converse technique is generalizable to nksmbiat are not fully connected, the bound on the
sum capacity and the corollaries of Theorem 1 do not holds Ehbecause if a network is not fully connected,
only some of the bounds of Theorem 1 are valid. In fact, it Byda see that a relay can improve total degrees
of freedom if a network is not fully connected. For example,the classical Gaussian relay channel with
a single source, a single destination and a relay, if thecgoisr not connected to the destination, then the
presence of the relay trivially increases the degrees efdfyen.

IV. K USERFULL DUPLEX NETWORK

In this section, we derive bounds on the degrees of freedaimedk -user full-duplex network (see Figure 4 (a)).
The K user full duplex network is a fully connected network withfull-duplex nodesl, 2, ... K. In this network
there exists a message from every node to every other node inetwork so that there are a total B{K — 1)
messages in the system. The message from riddenode: # j is denoted by, ;. Let H; ;(n) represent the
channel gain between nodeand; corresponding to theth symbol. The channel gains satisfy the reciprocity, i.e.,
H, j(n) = Hj(n) andH; ; = 0. As usual, all nodes have apriori knowledge of all channeigarhe input-output
relations in this channel are represented by

K
Yi(n) = Zﬂi,j(n)xj(n)+zi(n), ie{l,2...K} (32)



whereY;(n), X;(n), Z;(n) represent, respectively, the received symbol, the tratestnsymbol and the AWGN term
at nodei. For codewords of lengttV, the encoding functions in this network are defined as

Xi(n) = fin Wi, Wasi, ..., Wi, Wigr, .. Wi, Y1) (33)
and the decoding functions are defined as
Wii = g5V Wi, Wag oo, Wima . Wisn g, - Wie ), Vi # . (34)

The main result of this section is an approximation of theacéty of the K user full duplex network as follows.
Theorem 2: The capacityC(SNR) of the K user full-duplex network is bounded as follows.

C(SNR) > %bg(SNR)—Fo(log(SNR))

C(SNR) < K;[]({i__?’l)log(SNR)—i—o(log(SNR))
Equivalently, P o
K_K(-1) _, K-
2 2K —2 2K —3

whered;q represents the total number of degrees of freedom ofdheser full-duplex network.

In order to prove the above theorem, we need the lemma belaehwtansforms thd< user full duplex network
to a network whose source nodes are disjoint from destimatarles.

Lemma 1. The K user full-duplex network is equivalent to a network wih half-duplex source nodes arid
half-duplex destination nodes with the following propesti{also see Figure 4)

1) The input-output relations are described as
K
Yin) = Y Hi;(n)X;(n)+ Zi(n), i€{l,2...K}
j=1

whereVi, j € {1,2,... K}

_ Hz ) . .’
H, = 2J Z'7é ].
Hi,j = O 1= j

Note that this impliesH; ; = H;;,Vi # j
2) There areK (K — 1) messages in the system, denoted%yi,i #+ j. These messages are denoted by

W,: = Wi Vi#ji,je{l,2,.. K}

3) Encoding function of the form

Xl(n) = ﬁ_’n(i}inil, Wl,i7 WQ_’Z' e Wifl_’i, WiJrl,i PN WKJ) (35)

4) Decoding function of the form

W= gj,i(%N, Wi, Wo oo W1, Wity . Wi ), j # (36)
Note that the encoding and decoding functions imply that
« A genie provides receiverwith apriori knowledge of all messages at soujce. /VVM, Vi={1,2,...K}—{j}
« There is perfect feedback from destinatiinto sourcek.
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Fig. 4. (a) theK user full duplex network forx = 4 (b) An network whose capacity is identical to theuser full duplex network

Feedback

Fig. 5. 4 node network used in the outerbound of Theorem 2

Proof: By comparing encoding equations (33), (35) and decodingtoys (34), (36), the lemma can easily
be proved, i.e., it can be verified that any encoding scheraedan be implemented on th€ user full duplex
network, can also be implemented on network described irabitre lemma and vice-versa. |

Note that we have transformed tli& user network to an equivalent network whose source andndéisth nodes
are disjoint. Now, we extend the achievability and convers&heorem 1 to the network described in the lemma
to show the required result. We place the converse argumethiei next section. The achievable scheme used to
show the innerbound is placed in Appendix I.

We now proceed to prove the outerbound of Theorem 2.



A. Proof of Outer-bound of Theorem 2 s

Note that the outerbound of Theorem 2 is equivalent to thieviahg statement
K(K -1)
2K — 3
whered;q represents the number of degrees of freedom offtheser full duplex network.
If D%] is the degrees of freedom region of the user full duplex network, we show that

Z djp + Z dgi —dgp < 1,Yp#q

j€{1,2,3,..p—1,p+1,...K} i€{1,2,3,...¢—1,q+1,...K }

drq <

for all (di,j) € D%J. Summing inequalities of the above form over @l ¢), p # ¢ gives the desired outerbound.
It is enough to show the inequality far= 1 and¢ = K. The inequality extends to all other values (f ¢) by
symmetry. Therefore, we intend to show

Z djq1+ Z digk —dg1 <1

je{2,3,.. K} i€{1,2,3,...K—1}

To show the above inequality, we first siétj = ¢, (i—K)(j—1) # 0. With these messages set to null, there are no
messages intended for destination nbded therefore, it can only help the capacity of the networ&ugh feedback
of the received symbol to node Therefore, we can delete side information of messéjg’/%,j =23...K at
destinationl without affecting the converse argument. The rest of thefpi® very similar to the proof of the
Theorem 1 and we only highlight the differences here. Sintdathe first stage of the proof in Section IlI-A, the
network of Lemma 1 is converted todanode X network of Figure 5. This is done by allowing destination esd
1,2... K — 1 to co-operate with each other and source ndtles. K to co-operate with each other. As usual,
since co-operation does not reduce capacity, this argudwad not affect the converse argument.

The network is thus transformed todanode X network (Figure 5) with input-output relations describgd b

2
Yin) = Zﬁiyj(n)yj(n)—i-?i(n), i€ {3,4) (37)
where
Xi(n) = Yp(n) (38)
Xo(n) = [Xi(n) Xa(n) -+ Xpo1(n) Xpra(n) -+ Xg(n)© (39)
Ya(n) = Yq(n) (40)
Vi(n) = [Yi(n) Ya(n) -+ Yo1(n) Yeua(n) - Yi(n)]" (41)

Nodes2 and 3 act as multiple antenna nodes, each with— 1 antennasX;(n), Z;(n) are also defined in
a corresponding manner far= 1,2,j = 3,4. The definition of the channel coefficient$; ;(n) is clear from
equations (37) and (32), and from Figures 4, 5 and 3. Note fhat = Hk 1 # 0 since we havep # ¢. The
messages in thi¢ node X network are defined as follows

W3,1 = WQ,l W&l WK—l,l (42)
Wsa = ¢ (43)
Wi = Wk (44)
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Wao = Wk Wys -+ Wk (45)

The encoding and decoding functions, for codewords of ledgtover this4 node X network are defined as

Xi(n) = Ti,(Wsn, Wanr Vs Y, )
Xo(n) = Tou(Waa V5 WYy )
W4,z‘ = ?4,i(7fxv)ai =12
WB,I = ?3,1(7§7W4,2)

We allow multi-antenna noda to have apriori knowledge of messag, » through a genie. We also allow
perfect feedback from destination noded to source nodes, 2. Note that the side information through feedback
and genie in thel node X network constructed is stronger than the information atcthreesponding nodes in the
original K user network of Figure 4. Since we are only providing an dagend on the degrees of freedom region,
the argument is not affected. Now, over this network, wenceltiat the converse shown in the second stage of the
proof of Theorem 1 holds. Th¢ node X network differs from the network of Section IlI-A (Figure &) two
aspects:

1) In the X network considered in this section, no8idas information of messadé&, , apriori. In the4 node

X network of Figure 3, nod8 does not have this side information.
2) The network constructed here is not fully connected sicegain channel co-efficients are equal to zero.
However H, ; is non-zero.
1) does not affect the converse argument of Theorem 1 bethes®nverse for thé node X network begins with
the genie providing information df’y o and W, ; to node3. 2) does not affect the converse argument because, as
noted in Section 11I-C, the bound in (14) holds as longfas; # 0. Therefore, the bound of (14) holds for the
node network in consideration here i.e. the network definedduations (37) and we can write

d31+diq+din <1
K K—1

= Zdi’l + Z dK,j - dK,l < 1
i=2 j=1

whered; ; represents the number of degrees of freedom correspormlimgs$sagéV; ;. The desired result follows
from the final equation abov@

Remark : Full duplex operation can increase the degrees of freeddheisame node can be the source for one
message and the destination for another message. For exampl network of2 K users, assuming half-duplex
operation, the optimal arrangement is to operate d a 0 x K network which hasd,y = % degrees of
freedom. However, with full-duplex operation, the lowembd of Theorem 2 implies that;q > K > dyq Where
drq represents the degrees of freedom of the network where tthesrare full-duplex. Thus, full-duplex operation
can increase the degrees of freedom when source nodes adisjoiit from destination nodes. However, note
that Theorem 1 and its first corollary imply that full-duplegeration does not increase degrees of freedom of a

network whose source nodes are disjoint from destinatiateso

V. CONCLUSION

We characterize the capacity, withiflog(SNR)) of a fully connected network witl$' source nodesR relays and
D destination nodes with full duplex operation and feedb&t&.also provide bounds on capacity approximations



within o(log(SNR)) of the K user fully connected network in which there is a message fwety node to evlesry
other node. The lower and upper bound provided are tightis large. Apart from the small gap between the bounds
of the K user fully connected network, this work effectively solvbs degrees of freedom problem for a fairly
large class of wireless networks with time-varying/fregeye selective channel gains. A major implication of our
result is that the techniques of relays, perfect feedbasktoce nodes, noisy co-operation and full duplex operation
do not increase the degrees of freedom of fully connecteguéacy-selective interference add networks. An
important limitation of our results is the assumption of éivarying and/or frequency selective channel gains for
the achievability schemes based on interference alignriwever, the outerbounds of Theorem 1 and Theorem
2 are fairly general and hold for all fully connected netwsrkhether the channel coefficients are time-varying or
constants. Finally, it must be noted that the results of whsk assume that all source and destination nodes have
only a single antenna. The impact of relays, feedback,dufitex operation and co-operation for networks with
multi-antenna nodes in the general framework of this cpeadence remains to be studied.

From a practical perspective, the fact that relays, feedletc. do not increase degrees of freedom of wireféss
networks does not necessarily discourage the applicafidnese techniques in real communication scenarios. By
nature of the degrees of freedom approximation, the capebdracterization is an asymptotic result valid only at
high SNR (in theory, as SNR tends to infinity). Our result does preclude huge benefits in terms of capacity of
these networks at low or mid-range SNR from co-operationded by full-duplex relays, causal feedback or noisy
channels. Further, since the achievable scheme of thisr pagaires global channel knowledge and frequency-
selectivity, relays and the other factors may potentiallyehpositive degrees of freedom benefits when only local
channel knowledge is present or if channel gains are noué&ecy-selective (See, for example, [13]). Finally, as
observed in Section 11I-C and towards the end of Section fi¢sé techniques can improve degrees of freedom in
scenarios precluded by thex R x D network, such as when the network is not fully connected cemfieedback
is provided to a decoding node, or when source nodes can lieat&s nodes as well.

APPENDIX |
PROOF OF INNERBOUND OFTHEOREM 2 : ACHIEVABLE SCHEME

Note that the innerbound of theorem 2 is equivalent to
KK-1) K
dig> —~L = —
="K -2 ~ 2
wheredq represents the number of degrees of freedom offtheser full duplex network.
The achievability proof is based on interference alignnwear the channel described in lemma 1 (Figure 4(b)).
Since many of the details are identical to [4], we focus heréh® unique aspects of this proof.

LetT' = (K — 1)(K — 2). We show thatk (K — 1)n" degrees of freedom are achievable over a
fin = (K —1) (n + )" +n")

symbol extension of the channel for anye N thus implying the desired result. Over the extended charthel
scheme achieves' degrees of freedom for each of the(K — 1) message@i,j,j # 1. The signal vector in the
extended channel at th&" user’s receiver can be expressed as

M
Y;(0) = > Hiu(R)Xulr) + Z,
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whereX; is au, x 1 column vector representing the, symbol extension of the transmitted symb%}, i.e

Xi(ﬂn“"‘l)
)N(Z—;Ln/-€+2
X 2 | )

Xi(ﬂn(“ + 1))

Similarly Y; and Z; represenfu,, symbol extensions of th&; and Z; respectivelyH; ; is a diagonal, x pn
matrix representing thg,, symbol extension of the channel. Similar to the interfeesalignment based achievable
schemes of the interference atd channels, the messagi}iyj is encoded at transmitter as n' independent
streams so thaX; is

n+l)r
X;)= > SooaMeviim = Y Vig(e)xi(k)
i={1,2..K}—{j} m=1 i={1,2,...K}—{j}

The received signal at thie’” receiver can then be written as

ZHkl ZV” k)x;,i(K)) + Zi(K)

We now need to ensure that at receiyethe (K — 1)(K — 2) interfering space¥y, ;, k # i,k # j,i # j lie in
a (K —1)(n+ 1)I' dimensional space so thak — 1)n' desired spaceV;;,i € {1,2...} — {j} can be decoded
free of interference from @, dimensional space. To do this, we first set

Vii=V;,Vi#]
Then, we desigiV;, j = 1,2... K so that they satisfy the interference alignment equati@ievio

H; Vi < L,V{(i,4,k) : i £k, k# j,j #i} (46)

such that ranly) = (n + 1) whereP < Q implies that the span of the column vectorsPflies in the vector
space spanned by the column vector€pf Note that for a fixed:, there ard” = (K — 1)(K — 2) relations of the
above form. We first generatg, x 1 column vectorswy, k = 1,2... K so that all the entries ok, are drawn from
any continuous distribution independently from each otedt independently from all other entrieswy, ! # k.
The rest of the proof is similar to the achievable schemeHerX channel presented in [4]. It is easy to observe
that the dimension of the interfering space at recelvepace is equal to the dimension of the space spanned by
all column vectors of matricek;, j # k which is equal to(K — 1)(n + 1)*. The only difference from the model
in [4] is that here, we havél; ; = H;,; whereas, in [4] the matri¥]; ; is independent fronH, ;. However this
difference does not affect the construction of vectorssBatig the desired interference alignment relations (46).
The difference does not affect the argument that at anyveGeahe signal space is linearly independent with the
interference space since the argument only depends;oheing independent of; for [ # k. The only condition
that needs to be verified is that all the desired streams ofcativerk are linearly independent of each other. In
other words, all that needs to be shown is that the columrovecf

Dy, = [MHp1Vi1 HioVio .. Hippo1Vek—1 Hier1Vieksr Hi k' Viok]
Hi1Vi HpoVe ... HiyVy Hpi Ve Hi g V]



are linearly independent. The linear independence folliras the fact that the construction &f;, satisfying t}qe
relations of (46) is independent of boHl; ; and H; ; for i # k. Again, the reader is referred to the achievable
scheme in [4] for a formal proof of the same.
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